A Hierarchical Neural Network for Point Cloud Segmentation and Geometric Primitive Fitting

被引:1
|
作者
Wan, Honghui [1 ]
Zhao, Feiyu [1 ,2 ]
机构
[1] South Cent Minzu Univ, Coll Comp Sci, 182 Minzu Ave, Wuhan 430074, Peoples R China
[2] South Cent Minzu Univ, Key Lab Cyber Phys Fus Intelligent Comp, State Ethn Affairs Commiss, 182 Minzu Ave, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
computer vision; point cloud; segmentation; primitive fitting; RANSAC;
D O I
10.3390/e26090717
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Automated generation of geometric models from point cloud data holds significant importance in the field of computer vision and has expansive applications, such as shape modeling and object recognition. However, prevalent methods exhibit accuracy issues. In this study, we introduce a novel hierarchical neural network that utilizes recursive PointConv operations on nested subdivisions of point sets. This network effectively extracts features, segments point clouds, and accurately identifies and computes parameters of regular geometric primitives with notable resilience to noise. On fine-grained primitive detection, our approach outperforms Supervised Primitive Fitting Network (SPFN) by 18.5% and Cascaded Primitive Fitting Network (CPFN) by 11.2%. Additionally, our approach consistently maintains low absolute errors in parameter prediction across varying noise levels in the point cloud data. Our experiments validate the robustness of our proposed method and establish its superiority relative to other methodologies in the extant literature.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Hierarchical Grow Network for Point Cloud Segmentation
    Chen, Jiajing
    Kakillioglu, Burak
    Velipasalar, Senem
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 1558 - 1562
  • [2] Probabilistic Boundary-Guided Point Cloud Primitive Segmentation Network
    Wang, Shaohu
    Qin, Fangbo
    Tong, Yuchuang
    Shang, Xiuqin
    Zhang, Zhengtao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [3] PLSTMNet: A New Neural Network for Segmentation of Point Cloud
    Zhao, Junhe
    Liu, Chunlei
    Zhang, Baochang
    2018 11TH INTERNATIONAL WORKSHOP ON HUMAN FRIENDLY ROBOTICS (HFR), 2018, : 42 - 47
  • [4] Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation
    Jiang, Li
    Zhao, Hengshuang
    Liu, Shu
    Shen, Xiaoyong
    Fu, Chi-Wing
    Jia, Jiaya
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10432 - 10440
  • [5] Point cloud segmentation neural network with same-type point cloud assistance
    Lin, Jingxin
    Zhong, Kaifan
    Gong, Tao
    Zhang, Xianmin
    Wang, Nianfeng
    IMAGE AND VISION COMPUTING, 2024, 152
  • [6] HAPGN: Hierarchical Attentive Pooling Graph Network for Point Cloud Segmentation
    Chen, Chaofan
    Qian, Shengsheng
    Fang, Quan
    Xu, Changsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2335 - 2346
  • [7] Fitting Geometric Shapes to Fuzzy Point Cloud Data
    Verhoeven, Vincent B.
    Raumonen, Pasi
    Akerblom, Markku
    JOURNAL OF IMAGING, 2025, 11 (01)
  • [8] AIRBORNE LIDAR POINT CLOUD FITTING WITH GEOMETRIC CONSTRAINTS
    Tsao, Heng-Chuan
    Chen, Jyun-Yuan
    Lin, Chao-Hung
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 814 - 817
  • [9] Index edge geometric convolution neural network for point cloud classification
    Zhou P.
    Yang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (02): : 207 - 217
  • [10] Multilevel Geometric Feature Embedding in Transformer Network for ALS Point Cloud Semantic Segmentation
    Liang, Zhuanxin
    Lai, Xudong
    REMOTE SENSING, 2024, 16 (18)