Nonparametric statistical inference for compound models

被引:0
|
作者
Belomestny, Denis [1 ,2 ]
Morozova, Ekaterina [2 ]
Panov, Vladimir [2 ]
机构
[1] Univ Duisburg Essen, Essen, Germany
[2] HSE Univ, Pokrovsky Blvd 11, Moscow 109028, Russia
关键词
62G05; 62G20; DENSITY-ESTIMATION;
D O I
10.1080/02331888.2024.2382726
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with the statistical inference in compound models, which are defined as a sum of i.i.d. random variables $ \xi _1+\cdots +\xi _N $ xi 1+& ctdot;+xi N, where the number of summands, N, is a random variable independent of $ \xi _1, \xi _2,\ldots $ xi 1,xi 2,& mldr; Using the novel technique based on the superposition of the Mellin and Laplace transforms, we construct a nonparametric estimator for the distribution of N, assuming that the distribution of xi is known explicitly. Unlike most papers on this topic, we consider the general setting, where the distribution of N is not necessarily of Poisson type.
引用
收藏
页码:943 / 960
页数:18
相关论文
共 50 条