Internet of Things Cybersecurity Platform Benchmark: A Machine Learning Assessment

被引:0
|
作者
Craciun, Robert-Alexandru [1 ]
Pietraru, Radu Nicolae [1 ]
Moisescu, Mihnea Alexandru [1 ]
机构
[1] Natl Univ Sci & Technol, Politehn Bucharest, Bucharest, Romania
来源
关键词
Internet of Things; Artificial Intelligence; Hardware; Platforms; Single Board Computer; Benchmark; Cybersecurity;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
: Internet of Things (IoT) represents the interconnected network of different intelligent objects that contain sensors, software, and connectivity enables them to collect and exchange data over the internet. Ensuring the security of IoT is crucial in the digital realm as devices are all connected and they manage a lot of sensitive data. This paper proposes a benchmark comparison between a traditional IoT device and an AI accelerated device in order to evaluate the performances of each system in the context of IoT security and determine which platform can be used as a robust AI security detection and prevention system.
引用
收藏
页码:12 / 20
页数:9
相关论文
共 50 条
  • [1] INTERNET OF THINGS PLATFORM BENCHMARK: AN ARTIFICIAL INTELLIGENCE ASSESSMENT
    Craciun, Robert-Alexandru
    Pietraru, Radu-Nicolae
    Moisescu, Mihnea Alexandru
    [J]. REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2024, 69 (01): : 97 - 102
  • [2] Cybersecurity on internet of robotics things: experimental platform
    Flores-Montano, Luis-Alberto
    Herrera-Lozada, Juan-Carlos
    Sandoval-Gutierrez, Jacobo
    Vazquez-Lopez, Rodrigo
    Martinez-Vazquez, Daniel-Librado
    [J]. DYNA, 2021, 96 (05): : 540 - 545
  • [3] Design Guidelines for Machine Learning-based Cybersecurity in Internet of Things
    Boukerche, Azzedine
    Coutinho, Rodolfo W. L.
    [J]. IEEE NETWORK, 2021, 35 (01): : 393 - 399
  • [4] Machine Learning Based Network Intrusion Detection System for Internet of Things Cybersecurity
    Molcer, Piroska Stanic
    Pejic, Aleksandar
    Gulaci, Kristian
    Szalma, Reka
    [J]. SECURITY-RELATED ADVANCED TECHNOLOGIES IN CRITICAL INFRASTRUCTURE PROTECTION: THEORETICAL AND PRACTICAL APPROACH, 2022, : 95 - 110
  • [5] Automated Machine Learning Enabled Cybersecurity Threat Detection in Internet of Things Environment
    Alrowais, Fadwa
    Althahabi, Sami
    Alotaibi, Saud S.
    Mohamed, Abdullah
    Hamza, Manar Ahmed
    Marzouk, Radwa
    [J]. COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 45 (01): : 687 - 700
  • [6] Recent Advances on Federated Learning for Cybersecurity and Cybersecurity for Federated Learning for Internet of Things
    Ghimire, Bimal
    Rawat, Danda B.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (11) : 8229 - 8249
  • [7] A PLATFORM FOR LEARNING INTERNET OF THINGS
    Bogdanovic, Zorica
    Simic, Konstantin
    Milutinovic, Milos
    Radenkovic, Bozidar
    Despotovic-Zrakic, Marijana
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE - E-LEARNING 2014, 2014, : 259 - 266
  • [8] CYBERSECURITY AND INTERNET OF THINGS
    Capek, Jan
    [J]. STRATEGIC MODELING IN MANAGEMENT, ECONOMY AND SOCIETY (IDIMT-2018), 2018, 47 : 343 - 349
  • [9] A Deep Learning Methodology for Predicting Cybersecurity Attacks on the Internet of Things
    Alkhudaydi, Omar Azib
    Krichen, Moez
    Alghamdi, Ans D.
    [J]. INFORMATION, 2023, 14 (10)
  • [10] Quantum Machine Learning for Security Assessment in the Internet of Medical Things (IoMT)
    Rajawat, Anand Singh
    Goyal, S. B.
    Bedi, Pradeep
    Jan, Tony
    Whaiduzzaman, Md
    Prasad, Mukesh
    [J]. FUTURE INTERNET, 2023, 15 (08):