Energetic Particle Contamination in STIX During Solar Orbiter's Passage Through Earth's Radiation Belts and an Interplanetary Shock

被引:0
|
作者
Collier, Hannah [1 ,2 ]
Limousin, Olivier [3 ]
Xiao, Hualin [1 ]
Claret, Arnaud [3 ]
Schuller, Frederic [4 ]
Dresing, Nina [5 ]
Valkila, Saku [5 ]
Lara, Francisco Espinosa [6 ]
Fedeli, Annamaria [5 ]
Foucambert, Simon [3 ]
Krucker, Sam [1 ,7 ]
机构
[1] Univ Appl Arts & Sci Northwestern Switzerland FHNW, Inst Data Sci, CH-5210 Windisch, Switzerland
[2] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, Dept Phys, CH-8092 Zurich, Switzerland
[3] Univ Paris Saclay, Univ Paris Cite, CNRS, CEA, F-91190 Gif Sur Yvette, France
[4] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany
[5] Univ Turku, Dept Phys & Astron, Turku 20014, Finland
[6] Univ Alcala, Space Res Grp, Alcala De Henarez 28801, Spain
[7] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
基金
欧盟地平线“2020”; 芬兰科学院; 瑞士国家科学基金会;
关键词
Radiation environments; solar energetic particles (SEPs); space instrumentation; X-rays;
D O I
10.1109/TNS.2024.3355473
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Spectrometer/Telescope for Imaging X-rays (STIX) is a hard X-ray imaging spectrometer on board the ESA and NASA heliospheric mission Solar Orbiter. STIX has been operational for three years and has observed X-ray emission from similar to 35,000 solar flares. Throughout its lifetime, Solar Orbiter has been frequently struck by a high flux of energetic particles usually of flare origin, or from coronal mass ejection (CME) shocks. These solar energetic particles (SEPs) are detected on board by the purpose-built energetic particle detector (EPD) instrument suite. During SEP events, the X-ray signal is also contaminated in STIX. This work investigates the effect of these particles on the STIX instrument for two events. The first event occurred during an interplanetary shock crossing and the second event occurred when solar orbiter passed through Earth's radiation belts while performing a gravity assist maneuver. The induced spectra consist of tungsten fluorescence emission lines and secondary Bremsstrahlung emission produced by incident particles interacting with spacecraft components. For these two events, we identify >100 keV electrons as significant contributors to the contamination via Bremsstrahlung emission and tungsten fluorescence.
引用
收藏
页码:1606 / 1613
页数:8
相关论文
共 50 条
  • [1] Global MHD test particle simulations of solar energetic electron trapping in the Earth's radiation belts
    Kress, B. T.
    Hudson, M. K.
    Looper, M. D.
    Lyon, J. G.
    Goodrich, C. C.
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2008, 70 (14) : 1727 - 1737
  • [2] Forecasting the Earth's radiation belts and modelling solar energetic particle events: Recent results from SPACECAST
    Horne, Richard B.
    Glauert, Sarah A.
    Meredith, Nigel P.
    Koskinen, Hannu
    Vainio, Rami
    Afanasiev, Alexandr
    Ganushkina, Natalia Y.
    Amariutei, Olga A.
    Boscher, Daniel
    Sicard, Angelica
    Maget, Vincent
    Poedts, Stefaan
    Jacobs, Carla
    Sanahuja, Blai
    Aran, Angels
    Heynderickx, Daniel
    Pitchford, David
    [J]. JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2013, 3
  • [3] The creation of new ion radiation belts associated with solar energetic particle events and interplanetary shocks
    Mazur, J. E.
    Blake, J. B.
    Slocum, P. L.
    Hudson, M. K.
    Mason, G. M.
    [J]. SOLAR ERUPTIONS AND ENERGETIC PARTICLES, 2006, 165 : 345 - 352
  • [4] First year of energetic particle measurements in the inner heliosphere with Solar Orbiter's Energetic Particle Detector
    Wimmer-Schweingruber, R. F.
    Janitzek, N. P.
    Pacheco, D.
    Cernuda, I
    Lara, F. Espinosa
    Gomez-Herrero, R.
    Mason, G. M.
    Allen, R. C.
    Xu, Z. G.
    Carcaboso, F.
    Kollhoff, A.
    Kuehl, P.
    von Forstner, J. L. Freiherr
    Berger, L.
    Rodriguez-Pacheco, J.
    Ho, G. C.
    Andrews, G. B.
    Angelini, V
    Aran, A.
    Boden, S.
    Bottcher, S., I
    Carrasco, A.
    Dresing, N.
    Eldrum, S.
    Elftmann, R.
    Evans, V
    Gevin, O.
    Hayes, J.
    Heber, B.
    Horbury, T. S.
    Kulkarni, S. R.
    Lario, D.
    Lees, W. J.
    Limousin, O.
    Malandraki, O. E.
    Martin, C.
    O'Brien, H.
    Mateo, M. Prieto
    Ravanbakhsh, A.
    Rodriguez-Polo, O.
    Sanchez Prieto, S.
    Schlemm, C. E.
    Seifert, H.
    Terasa, J. C.
    Tyagi, K.
    Vainio, R.
    Walsh, A.
    Yedla, M. K.
    [J]. ASTRONOMY & ASTROPHYSICS, 2021, 656
  • [5] Effects of Solar Wind Plasma Flow and Interplanetary Magnetic Field on the Spatial Structure of Earth's Radiation Belts
    Li, L. Y.
    Yang, S. S.
    Cao, J. B.
    Yu, J.
    Luo, X. Y.
    Blake, J. B.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (12) : 10332 - 10344
  • [6] Electromagnetic Structures and Particle Acceleration in Earth's Radiation Belts
    Chaston, Chris C.
    [J]. PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 55 - 55
  • [7] Modeling the after-effects of a heliospheric traveling shock wave through the Earth's radiation belts
    Spjeldvik, WN
    [J]. SPACE WEATHER: PHYSICS AND APPLICATIONS, 2000, 26 (01): : 99 - 102
  • [8] Electron acceleration at the Earth's bow shock, solar flares and interplanetary shocks
    Oka, Mituso
    Terasawa, Toshio
    [J]. NEW SOLAR PHYSICS WITH SOLAR-B MISSION, 2007, 369 : 497 - +
  • [9] Pitch-angle distribution in the Earth's radiation belts of energetic particles accelerated during a strong magnetic storm
    Muravieva, E. A.
    [J]. COSMIC RESEARCH, 2009, 47 (04) : 337 - 340
  • [10] Pitch-angle distribution in the Earth’s radiation belts of energetic particles accelerated during a strong magnetic storm
    E. A. Muravieva
    [J]. Cosmic Research, 2009, 47 : 337 - 340