Generating random Gaussian states

被引:0
|
作者
Leppajarvi, Leevi [1 ]
Nechita, Ion [2 ]
Sengupta, Ritabrata [3 ]
机构
[1] Slovak Acad Sci, Inst Phys, RCQI, Dubravska Cesta 9, Bratislava 84511, Slovakia
[2] Univ Toulouse, Lab Phys Theor, CNRS, UPS, Toulouse, France
[3] Indian Inst Sci Educ & Res IISER Berhampur, Govt ITI, Dept Math Sci, Transit Campus, Ganjam 760010, Odisha, India
基金
欧盟地平线“2020”;
关键词
FREE CONVOLUTION; QUANTUM; ENTANGLEMENT; EIGENVALUES;
D O I
10.1063/5.0202147
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a method for the random sampling of (multimode) Gaussian states in terms of their covariance matrix, which we refer to as a random quantum covariance matrix (RQCM). We analyze the distribution of marginals and demonstrate that the eigenvalues of an RQCM converge to a shifted semicircular distribution in the limit of a large number of modes. We provide insights into the entanglement of such states based on the positive partial transpose criteria. Additionally, we show that the symplectic eigenvalues of an RQCM converge to a probability distribution that can be characterized using free probability. We present numerical estimates for the probability of a RQCM being separable and, if not, its extendibility degree, for various parameter values and mode bipartitions.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Generating broadband random Gaussian signals
    Zhilyaev, Yu. V.
    Il'inskaya, N. D.
    Inovenkov, A. N.
    Karpov, A. A.
    Kuznetsov, S. I.
    Orlova, T. A.
    Panteleev, V. N.
    Panyutin, E. A.
    Snytkina, S. A.
    Titkova, O. V.
    Fedorov, L. M.
    Khvostikov, V. P.
    TECHNICAL PHYSICS LETTERS, 2010, 36 (08) : 733 - 736
  • [2] Generating broadband random Gaussian signals
    Yu. V. Zhilyaev
    N. D. Il’inskaya
    A. N. Inovenkov
    A. A. Karpov
    S. I. Kuznetsov
    T. A. Orlova
    V. N. Panteleev
    E. A. Panyutin
    S. A. Snytkina
    O. V. Titkova
    L. M. Fedorov
    V. P. Khvostikov
    Technical Physics Letters, 2010, 36 : 733 - 736
  • [3] Generating cosmological Gaussian random fields
    Pen, UL
    ASTROPHYSICAL JOURNAL, 1997, 490 (02): : L127 - L130
  • [4] bythenumbers Generating Gaussian Random Variates
    Dyer, Justin S.
    Dyer, Stephen A.
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2009, 12 (01) : 34 - 38
  • [5] On generating random Gaussian graphical models
    Cordoba, Irene
    Varando, Gherardo
    Bielza, Concha
    Larranaga, Pedro
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 125 (125) : 240 - 250
  • [6] GENERATING RANDOM FACTORED GAUSSIAN INTEGERS, EASILY
    Lebowitz-Lockard, Noah
    Pomerance, Carl
    MATHEMATICS OF COMPUTATION, 2015, 85 (297) : 503 - 516
  • [7] Generating inverse Gaussian random variates by approximation
    Lai, Yongzeng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (10) : 3553 - 3559
  • [8] A NEW ALGORITHM FOR GENERATING GAUSSIAN RANDOM NUMBERS
    Boiroju, Naveen Kumar
    Venkaiah, K.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2016, 12 (02): : 307 - 310
  • [9] Generating generalized inverse Gaussian random variates
    Hormann, Wolfgang
    Leydold, Josef
    STATISTICS AND COMPUTING, 2014, 24 (04) : 547 - 557
  • [10] Generating generalized inverse Gaussian random variates
    Wolfgang Hörmann
    Josef Leydold
    Statistics and Computing, 2014, 24 : 547 - 557