Hybrid model-free control based on deep reinforcement learning: An energy-efficient operation strategy for HVAC systems

被引:0
|
作者
Zhang, Xiaoming [1 ]
Wang, Xinwei [1 ]
Zhang, Haotian [1 ]
Ma, Yinghan [1 ]
Chen, Shaoye [1 ]
Wang, Chenzheng [1 ]
Chen, Qili [1 ]
Xiao, Xiaoyang [1 ]
机构
[1] Shenyang Jianzhu Univ, Sch Municipal & Environm Engn, 25 Hunnan Middle Rd, Shenyang 110168, Liaoning, Peoples R China
来源
关键词
Deep Q -Network; Groundwater source heat pump; Global optimization; HVAC; Hybrid model-free control;
D O I
10.1016/j.jobe.2024.110410
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
At present, most optimization objectives of heating, ventilation, and air-conditioning (HVAC) systems focus on the local optimization of equipment during cooling hours, usually ignoring the importance of the end conditions. In addition, traditional control methods may not perform well in complex or dynamic systems. Therefore, in this study, a hybrid model-free control (HMFC) strategy was developed that combines deep reinforcement learning (DRL) with L-BFGS-B and expert knowledge to improve its ability to cope with complex system environments. This strategy was used to optimize the cooling and heating periods of a groundwater source heat pump system in a bitterly cold region of China throughout the year, considering the end-of-system conditions. L-BFGS-B optimized the fresh-air ratios for the end air-handling unit, whereas DRL achieved global optimization of the heat pump outlet temperature, air-conditioning water circulation pump frequency, and submersible-pump frequency. To verify the effectiveness of the strategy, a simulation platform was built based on actual data and device parameters, and the simulation results of HMFC and model predictive control (MPC) were output, compared, and analyzed with data of the system measured in 2022 under expert rule-based manual control (RBC). The results show that HMFC was 7.38 % and 9.38 % more energy efficient than RBC during heating hours, respectively. HMFC was 24.26 % more energy efficient than RBC and 10.03 % more energy efficient than MPC during cooling hours. Moreover, the distribution of the system coefficient of performance under the HMFC method was more concentrated in the higher range, indicating that the proposed HMFC can save energy savings. Thus, it is a feasible optimization scheme for buildings without a large number of historical data. Finally, the strategy was applied to a real engineering experimental analysis, and the engineering practice results show that the strategy is robust and practical.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] An Hybrid Model-Free Reinforcement Learning Approach for HVAC Control
    Solinas, Francesco M.
    Bellagarda, Andrea
    Macii, Enrico
    Patti, Edoardo
    Bottaccioli, Lorenzo
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [2] Model-free Based Reinforcement Learning Control Strategy of Aircraft Attitude Systems
    Huang, Dingcui
    Hu, Jiangping
    Peng, Zhinan
    Chen, Bo
    Hao, Mingrui
    Ghosh, Bijoy Kumar
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 743 - 748
  • [3] Comparative study of model-based and model-free reinforcement learning control performance in HVAC systems
    Gao, Cheng
    Wang, Dan
    JOURNAL OF BUILDING ENGINEERING, 2023, 74
  • [4] Novel Model-free Optimal Active Vibration Control Strategy Based on Deep Reinforcement Learning
    Zhang, Yi-Ang
    Zhu, Songye
    STRUCTURAL CONTROL & HEALTH MONITORING, 2023, 2023
  • [5] A Novel Energy Efficient Operation Strategy for a Train Based on Model-Free Adaptive Predictive Control
    Yang Wen
    Yin Chenkun
    Hou Zhongsheng
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 7286 - 7291
  • [6] Hybrid control for combining model-based and model-free reinforcement learning
    Pinosky, Allison
    Abraham, Ian
    Broad, Alexander
    Argall, Brenna
    Murphey, Todd D.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2023, 42 (06): : 337 - 355
  • [7] Control of a Wave Energy Converter Using Model-free Deep Reinforcement Learning
    Chen, Kemeng
    Huang, Xuanrui
    Lin, Zechuan
    Xiao, Xi
    2024 UKACC 14TH INTERNATIONAL CONFERENCE ON CONTROL, CONTROL, 2024, : 1 - 6
  • [8] Model-Free Load Frequency Control of Nonlinear Power Systems Based on Deep Reinforcement Learning
    Chen, Xiaodi
    Zhang, Meng
    Wu, Zhengguang
    Wu, Ligang
    Guan, Xiaohong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) : 6825 - 6833
  • [9] Towards self-learning control of HVAC systems with the consideration of dynamic occupancy patterns: Application of model-free deep reinforcement learning
    Esrafilian-Najafabadi, Mohammad
    Haghighat, Fariborz
    BUILDING AND ENVIRONMENT, 2022, 226
  • [10] Acceleration control strategy for aero-engines based on model-free deep reinforcement learning method
    Gao, Wenbo
    Zhou, Xin
    Pan, Muxuan
    Zhou, Wenxiang
    Lu, Feng
    Huang, Jinquan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 120