Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis

被引:0
|
作者
Sun, Xiaohui [1 ]
Zhang, Peng [1 ]
Zhang, Bangyan [1 ]
Xu, Chunming [1 ]
机构
[1] China Petr Univ Beijing, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon substrates; catalytic performance; electrocatalysis; electronic structure; single atom catalyst; OXYGEN REDUCTION; COORDINATION-NUMBER; HIGH-PERFORMANCE; BORON-NITRIDE; ACTIVE-SITES; CO2; PLATINUM; GRAPHENE; STRATEGY; DENSITY;
D O I
10.1002/smll.202405624
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications. Carbon-supported single-atom-catalysts have exhibited excellent catalytic performance in electrocatalysis. In this review, the approaches are summarized to precisely regulate the electronic structure of single-atom sites, build the relationship between their electronic structure and electrocatalytic activity by combining key characterization techniques with DFT calculations, and propose insights into the challenges and future prospects in this field. image
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Electronic structure and geometric construction modulation of carbon-based single/dual atom catalysts for electrocatalysis
    Zhang S.
    Huang J.
    Ma L.
    Zhai D.
    Wei B.
    Yang H.
    He C.
    Energy Reviews, 2024, 3 (03):
  • [2] Regulating Electronic Structure of Single-Atom Catalysts toward Efficient Bifunctional Oxygen Electrocatalysis
    Ji, Jiapeng
    Wu, Lei
    Zhou, Shiyu
    Qiu, Tong
    Li, Zeheng
    Wang, Liguang
    Zhang, Liang
    Ma, Lu
    Ling, Min
    Zhou, Shaodong
    Liang, Chengdu
    SMALL METHODS, 2022, 6 (04)
  • [3] Carbon-Based Single-Atom Catalysts for Advanced Applications
    Gawande, Manoj B.
    Fornasiero, Paolo
    Zboril, Radek
    ACS CATALYSIS, 2020, 10 (03): : 2231 - 2259
  • [4] Electronic structure regulation of the Fe-based single-atom catalysts for oxygen electrocatalysis
    Wang, Xiaochen
    Kang, Zhiwen
    Wang, Dan
    Zhao, Yafei
    Xiang, Xu
    Shang, Huishan
    Zhang, Bing
    NANO ENERGY, 2024, 121
  • [5] Tuning the Coordination Environment of Carbon-Based Single-Atom Catalysts via Doping with Multiple Heteroatoms and Their Applications in Electrocatalysis
    Qi, Zhijie
    Zhou, Yan
    Guan, Runnan
    Fu, Yongsheng
    Baek, Jong-Beom
    ADVANCED MATERIALS, 2023, 35 (38)
  • [6] Design strategies of carbon-based single-atom catalysts for efficient electrochemical hydrogen peroxide production
    Gao, Zhimin
    Zhu, Qiuzi
    Cao, Yanyan
    Wang, Cunshi
    Liu, Luming
    Zhu, Jianzhong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [7] Stability of single-atom catalysts for electrocatalysis
    Hu, Hao
    Wang, Jiale
    Tao, Peng
    Song, Chengyi
    Shang, Wen
    Deng, Tao
    Wu, Jianbo
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 5835 - 5849
  • [8] Sulfur Modified Carbon-Based Single-Atom Catalysts for Electrocatalytic Reactions
    Li, Yinqi
    Wei, Zihao
    Sun, Zhiyi
    Zhai, Huazhang
    Li, Shenghua
    Chen, Wenxing
    SMALL, 2024, 20 (38)
  • [9] Carbon-based material-supported single-atom catalysts for energy conversion
    Zhang, Huimin
    Liu, Wenhao
    Cao, Dong
    Cheng, Daojian
    ISCIENCE, 2022, 25 (06)
  • [10] Carbon-based single-atom catalysts derived from biomass: Fabrication and application
    Li, Junkai
    Wang, Guanhua
    Sui, Wenjie
    Parvez, Ashak Mahmud
    Xu, Ting
    Si, Chuanling
    Hu, Jinguang
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2024, 329