Chromatic symmetric functions and polynomial invariants of trees

被引:0
|
作者
Aliste-Prieto, Jose [1 ]
Martin, Jeremy L. [2 ]
Wagner, Jennifer D. [3 ]
Zamora, Jose [1 ]
机构
[1] Univ Andres Bello, Fac Ciencias Exactas, Dept Matemat, Santiago, Chile
[2] Univ Kansas, Dept Math, Lawrence, KS USA
[3] Washburn Univ, Dept Math & Stat, Topeka, KS USA
关键词
GRAPHS; CATERPILLARS;
D O I
10.1112/blms.13144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stanley asked whether a tree is determined up to isomorphism by its chromatic symmetric function. We approach Stanley's problem by studying the relationship between the chromatic symmetric function and other invariants. First, we prove Crew's conjecture that the chromatic symmetric function of a tree determines its generalized degree sequence, which enumerates vertex subsets by cardinality and the numbers of internal and external edges. Second, we prove that the restriction of the generalized degree sequence to subtrees contains exactly the same information as the subtree polynomial, which enumerates subtrees by cardinality and number of leaves. Third, we construct arbitrarily large families of trees sharing the same subtree polynomial, proving and generalizing a conjecture of Eisenstat and Gordon.
引用
收藏
页码:3452 / 3476
页数:25
相关论文
共 50 条
  • [41] Chromatic symmetric functions and H-free graphs
    Hamel, Angele M.
    Hoang, Chinh T.
    Tuero, Jake E.
    GRAPHS AND COMBINATORICS, 2019, 35 (04) : 815 - 825
  • [42] Chromatic symmetric functions and H-free graphs
    Angèle M. Hamel
    Chính T. Hoàng
    Jake E. Tuero
    Graphs and Combinatorics, 2019, 35 : 815 - 825
  • [43] A composition method for neat formulas of chromatic symmetric functions
    Wang, David G. L.
    Zhou, James Z. F.
    ADVANCES IN APPLIED MATHEMATICS, 2025, 167
  • [44] A combinatorial formula for the Schur coefficients of chromatic symmetric functions
    Wang, David G. L.
    Wang, Monica M. Y.
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 621 - 630
  • [45] POLYNOMIAL INVARIANTS ARE POLYNOMIAL
    Bar-Natan, Dror
    MATHEMATICAL RESEARCH LETTERS, 1995, 2 (03) : 231 - 238
  • [46] Specializations of MacMahon symmetric functions and the polynomial algebra
    Rosas, MH
    DISCRETE MATHEMATICS, 2002, 246 (1-3) : 285 - 293
  • [47] Polynomial representations of symmetric partial Boolean functions
    De Graaf, M
    Valiant, P
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (02) : 481 - 488
  • [48] POLYNOMIAL EXPANSION OF SYMMETRIC BOOLEAN FUNCTIONS.
    Suprun, V.P.
    1600, (23):
  • [49] Quasi-symmetric functions as polynomial functions on Young diagrams
    Jean-Christophe Aval
    Valentin Féray
    Jean-Christophe Novelli
    Jean-Yves Thibon
    Journal of Algebraic Combinatorics, 2015, 41 : 669 - 706
  • [50] Quasi-symmetric functions as polynomial functions on Young diagrams
    Aval, Jean-Christophe
    Feray, Valentin
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (03) : 669 - 706