Matheuristic Variants of DSATUR for the Vertex Coloring Problem

被引:0
|
作者
Dupin, Nicolas [1 ]
机构
[1] Univ Angers, LERIA, SFR MATHSTIC, F-49000 Angers, France
来源
关键词
Matheuristic; Vertex Coloring; DSATUR; cliques; dual heuristic; ALGORITHM; GRAPH;
D O I
10.1007/978-3-031-62922-8_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper extends with matheuristic operators the seminal DSATUR heuristic for the Vertex Coloring Problem. Firstly, matheuristics are proposed to initialize saturation computing using a clique, a partial optimal coloring with selected vertices or combining both previous strategies. Secondly, an Integer Linear Programming formulation is designed to have larger local greedy optimization in DSATUR construction scheme. Thirdly, dual bounds are obtained with local optimization to improve first lower bounds implied by cliques. Computational results are provided to analyze inefficiency causes of DSATUR heuristic, highlighting the strengths and weaknesses of DSATUR heuristics.
引用
下载
收藏
页码:96 / 111
页数:16
相关论文
共 50 条
  • [1] An Improved DSATUR-Based Branch-and-Bound Algorithm for the Vertex Coloring Problem
    Furini, Fabio
    Gabrel, Virginie
    Ternier, Ian-Christopher
    NETWORKS, 2017, 69 (01) : 124 - 141
  • [2] A new DSATUR-based algorithm for exact vertex coloring
    San Segundo, Pablo
    COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (07) : 1724 - 1733
  • [3] A DSATUR-based algorithm for the Equitable Coloring Problem
    Mendez-Diaz, Isabel
    Nasini, Graciela
    Severin, Daniel
    COMPUTERS & OPERATIONS RESEARCH, 2015, 57 : 41 - 50
  • [4] An Iterative Matheuristic Algorithm for the B-Coloring Problem
    Montemanni, Roberto
    Smith, Derek H.
    ACM International Conference Proceeding Series, 2022, : 265 - 270
  • [5] Uncertain vertex coloring problem
    Chen, Lin
    Peng, Jin
    Ralescu, Dan A.
    SOFT COMPUTING, 2019, 23 (04) : 1337 - 1346
  • [6] Uncertain vertex coloring problem
    Lin Chen
    Jin Peng
    Dan A. Ralescu
    Soft Computing, 2019, 23 : 1337 - 1346
  • [7] Polynomial Cases for the Vertex Coloring Problem
    T. Karthick
    Frédéric Maffray
    Lucas Pastor
    Algorithmica, 2019, 81 : 1053 - 1074
  • [8] A NEW APPROACH TO THE VERTEX COLORING PROBLEM
    Torkestani, Javad Akbari
    CYBERNETICS AND SYSTEMS, 2013, 44 (05) : 444 - 466
  • [9] An exact approach for the Vertex Coloring Problem
    Malaguti, Enrico
    Monaci, Michele
    Toth, Paolo
    DISCRETE OPTIMIZATION, 2011, 8 (02) : 174 - 190
  • [10] The Distance Polytope for the Vertex Coloring Problem
    Dias, Bruno
    de Freitas, Rosiane
    Maculan, Nelson
    Marenco, Javier
    COMBINATORIAL OPTIMIZATION, ISCO 2018, 2018, 10856 : 144 - 156