Characteristic parameter analysis for identification of vortex-induced vibrations of a long-span bridge

被引:1
|
作者
Guo, Jian [1 ,2 ]
Shen, Yufeng [2 ]
Weng, Bowen [2 ]
Zhong, Chenjie [2 ]
机构
[1] Southwest Jiaotong Univ, State Key Lab Bridge Intelligent & Green Construct, Chengdu 610031, Sichuan, Peoples R China
[2] Zhejiang Univ Technol, Inst Bridge Engn, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Long-span suspension bridge; Structural heath monitoring; Vortex-induced vibration; Wind field feature; Dynamic response; Characteristic parameter; CABLE-STAYED BRIDGE; SUSPENSION BRIDGE; FULL-SCALE; BOX GIRDERS; DECOMPOSITION; ENERGY; GUIDE; TREE;
D O I
10.1007/s13349-024-00834-5
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As a wind-sensitive structure, long-span bridges are prone to the vibration excited by periodic shedding vortex called vortex-induced vibration (VIV). Timely warning and accurate identification of VIV are required for VIV detection and mitigation. To meet the above-mentioned requirements, the structural health monitoring system provides a wealth of field monitoring data, which serves as the basis for comprehensive analysis of bridge environmental conditions and structural states. In this paper, the wind field features and structural dynamic responses of a long-span suspension bridge were analyzed using field monitoring data from 2013, 2014, and 2017. First, the characteristic parameters with significant specificity, including the probability of wind speed, the probability of wind direction, root mean square (RMS), spectral peak difference rate, and energy proportion, were utilized as VIV early warning and identification indexes, the corresponding threshold of above index values was calculated based on the Pauta criterion. Meanwhile, different time intervals were selected to discuss early warning (identification)accuracy of the parameter thresholds. Then, the VIV early warning and identification strategy was established. Finally, the thresholds of each characteristic parameter were updated based on the VIV database and the accuracy of the strategy was verified. The results show that the probability of wind speed and direction in VIV ranges can provide early warning of the potential VIV. Based on the dynamic response characteristics, including the RMS of acceleration, power spectrum, and energy proportion, the proposed strategy can distinguish VIV from ambient vibration. The early warning and identification of VIV based on field monitoring data are successfully achieved by the proposed strategy, which can be applied to practical engineering.
引用
收藏
页码:127 / 150
页数:24
相关论文
共 50 条
  • [1] Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge
    Li, Hui
    Laima, Shujin
    Zhang, Qiangqiang
    Li, Na
    Liu, Zhiqiang
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2014, 124 : 54 - 67
  • [2] Vortex-induced vibration analysis of a long-span arch bridge
    Tang, Chunping
    Zhang, Liangliang
    International Journal of Applied Mathematics and Statistics, 2013, 49 (19): : 324 - 332
  • [3] Study on The vortex-induced vibration of a long-span arch bridge
    Tang, Chunping
    Zhang, Liangliang
    MATERIALS SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY, PTS 1 AND 2, 2014, 488-489 : 681 - +
  • [4] A Data-Driven Model for Predictive Modeling of Vortex-Induced Vibrations of a Long-Span Bridge
    Wang, Yafei
    Feng, Hui
    Xu, Nan
    Zhong, Jiwei
    Wang, Zhengxing
    Yao, Wenfan
    Jiang, Yuyin
    Laima, Shujin
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [5] Vortex-Induced Force Identification of a Long-Span Bridge Based on Field Measurement Data
    Jiang, S. J.
    Xu, Y. L.
    Zhu, J.
    Zhang, G. Q.
    Dan, D. H.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2023, 2023
  • [6] Control of Vortex-Induced Vibration of a Long-Span Bridge by Inclined Railings
    Xin, Dabo
    Zhan, Jian
    Zhang, Hongfu
    Ou, Jinping
    JOURNAL OF BRIDGE ENGINEERING, 2021, 26 (12)
  • [7] Reliability Evaluation of Vortex-Induced Vibration for a Long-Span Arch Bridge
    Li, Lingyao
    Wu, Teng
    He, Xuhui
    Hao, Jianming
    Wang, Hanfeng
    Xu, Hanyong
    JOURNAL OF BRIDGE ENGINEERING, 2018, 23 (05)
  • [8] Multimode damping optimization of a long-span suspension bridge with damped outriggers for suppressing vortex-induced vibrations
    Liu, Zhanhang
    Chen, Lin
    Sun, Limin
    Zhao, Lin
    Cui, Wei
    Guan, Hua
    ENGINEERING STRUCTURES, 2023, 286
  • [9] A model for vortex-induced vibration analysis of long-span bridges
    Mashnad, Mehedy
    Jones, Nicholas P.
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2014, 134 : 96 - 108
  • [10] Calculation of spanwise vortex-induced vibration responses of long-span bridge girder
    Research Center of Wind Eng., Southwest Jiaotong University, Chengdu 610031, China
    Xinan Jiaotong Daxue Xuebao, 2008, 6 (740-746): : 740 - 746