Real-Time Semantic Segmentation Algorithm for Street Scenes Based on Attention Mechanism and Feature Fusion

被引:0
|
作者
Wu, Bao [1 ]
Xiong, Xingzhong [2 ]
Wang, Yong [1 ]
机构
[1] Sichuan Univ Sci & Engn, Sch Automat & Informat Engn, Yibin 644000, Peoples R China
[2] Sichuan Univ Sci & Engn, Artificial Intelligence Key Lab Sichuan Prov, Yibin 644000, Peoples R China
关键词
semantic segmentation; feature fusion; feature extraction; pyramid pooling; complex street scenes; NETWORK;
D O I
10.3390/electronics13183699
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In computer vision, the task of semantic segmentation is crucial for applications such as autonomous driving and intelligent surveillance. However, achieving a balance between real-time performance and segmentation accuracy remains a significant challenge. Although Fast-SCNN is favored for its efficiency and low computational complexity, it still faces difficulties when handling complex street scene images. To address this issue, this paper presents an improved Fast-SCNN, aiming to enhance the accuracy and efficiency of semantic segmentation by incorporating a novel attention mechanism and an enhanced feature extraction module. Firstly, the integrated SimAM (Simple, Parameter-Free Attention Module) increases the network's sensitivity to critical regions of the image and effectively adjusts the feature space weights across channels. Additionally, the refined pyramid pooling module in the global feature extraction module captures a broader range of contextual information through refined pooling levels. During the feature fusion stage, the introduction of an enhanced DAB (Depthwise Asymmetric Bottleneck) block and SE (Squeeze-and-Excitation) attention optimizes the network's ability to process multi-scale information. Furthermore, the classifier module is extended by incorporating deeper convolutions and more complex convolutional structures, leading to a further improvement in model performance. These enhancements significantly improve the model's ability to capture details and overall segmentation performance. Experimental results demonstrate that the proposed method excels in processing complex street scene images, achieving a mean Intersection over Union (mIoU) of 71.7% and 69.4% on the Cityscapes and CamVid datasets, respectively, while maintaining inference speeds of 81.4 fps and 113.6 fps. These results indicate that the proposed model effectively improves segmentation quality in complex street scenes while ensuring real-time processing capabilities.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Adaptive Attention Mechanism Fusion for Real-Time Semantic Segmentation in Complex Scenes
    Chen, Dan
    Liu, Le
    Wang, Chenhao
    Bai, Xiru
    Wang, Zichen
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (08): : 3334 - 3342
  • [2] Real-Time Semantic Segmentation Algorithm Based on Feature Fusion Technology
    Cai Yu
    Huang Xuegong
    Zhian, Zhang
    Zhu Xinnian
    Ma Xiang
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (02)
  • [3] DSANet: Dilated spatial attention for real-time semantic segmentation in urban street scenes
    Elhassan, Mohammed A. M.
    Huang, Chenxi
    Yang, Chenhui
    Munea, Tewodros Legesse
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183
  • [4] Gated feature aggregate and alignment network for real-time semantic segmentation of street scenes
    Liu, Qian
    Li, Zhensheng
    Qi, Youwei
    Wang, Cunbao
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [5] Semantic segmentation algorithm based on class feature attention mechanism fusion
    Chen, Na
    Zhang, Rong-fen
    Liu, Yu-hong
    Li, Li
    Zhang, Wen-wen
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (02) : 236 - 244
  • [6] Based on cross-scale fusion attention mechanism network for semantic segmentation for street scenes
    Ye, Xin
    Gao, Lang
    Chen, Jichen
    Lei, Mingyue
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [7] Stage-Aware Feature Alignment Network for Real-Time Semantic Segmentation of Street Scenes
    Weng, Xi
    Yan, Yan
    Chen, Si
    Xue, Jing-Hao
    Wang, Hanzi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4444 - 4459
  • [8] MDRNet: a lightweight network for real-time semantic segmentation in street scenes
    Dai, Yingpeng
    Wang, Junzheng
    Li, Jiehao
    Li, Jing
    ASSEMBLY AUTOMATION, 2021, 41 (06) : 725 - 733
  • [9] MFNet: Multi-Feature Fusion Network for Real-Time Semantic Segmentation in Road Scenes
    Lu, Mengxu
    Chen, Zhenxue
    Liu, Chengyun
    Ma, Sile
    Cai, Lei
    Qin, Hao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 20991 - 21003
  • [10] Multi-directional feature refinement network for real-time semantic segmentation in urban street scenes
    Zhou, Yan
    Zheng, Xihong
    Yang, Yin
    Li, Jianxun
    Mu, Jinzhen
    Irampaye, Richard
    IET COMPUTER VISION, 2023, 17 (04) : 431 - 444