Effects of different activators on autogenous shrinkage of alkali-activated slag cement

被引:1
|
作者
Yang, Cong [1 ]
Liu, Jianhui [1 ,2 ]
Liu, Leping [3 ]
Kuang, Lihan [1 ]
Zhang, Shichong [1 ]
Chen, Zheng [1 ,2 ]
Li, Jing [1 ]
Shi, Caijun [4 ]
机构
[1] Guangxi Univ, Sch Civil Engn & Architecture, Key Lab Disaster Prevent & Struct Safety China Min, Nanning 530004, Peoples R China
[2] Guangxi Univ, State Key Lab Featured Met Mat & Life cycle Safety, Nanning 530004, Peoples R China
[3] Nanning Normal Univ, Coll Chem & Mat, Nanning 530100, Peoples R China
[4] Hunan Univ, Coll Civil Engn, Key Lab Green & Adv Civil Engn Mat & Applicat Tech, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Alkali-activated slag; Autogenous shrinkage; Activator; Sodium sulfate; Internal relative humidity (IRH); ONE-PART GEOPOLYMER; FLY-ASH; HYDRATION; SODIUM; PERMEABILITY; KINETICS; MORTARS; SULFATE; WATER; PASTE;
D O I
10.1016/j.conbuildmat.2024.138018
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Despite the exceptional early strength of sodium silicate or sodium hydroxide-activated slags, much emphasis has always been drawn to the volume instability brought on by their autogenous shrinkage. In this study, a ternary composite activation system was developed by introducing sodium sulfate (Na2SO4), and the effect of Na2SO4Na2O.1.5SiO2-NaOH ternary composite activators system on the autogenous shrinkage, setting time, and mechanical properties of alkali-activated slag (AAS) was investigated. The effect mechanism of different activator compositions on the autogenous shrinkage of AAS was discussed through the internal relative humidity (IRH), surface tension of pore solution, and microstructure analysis. According to experimental results, the surface tension of pore solution can be reduced and IRH increased by increasing Na2SO4 content in AAS. Additionally, the formation of crystals (anhydrite, ettringite, and thenardite) with specific expansion properties can effectively mitigate autogenous shrinkage in AAS with Na2SO4. The proportions of Na2O.1.5SiO2 and NaOH determine the extent to which Na2SO4 impact the autogenous shrinkage of AAS. An optimal composite activator composition for AAS was determined using a model analysis: When the content of Na2O.1.5SiO2 ranged from 5 % to 17 %, Na2SO4 content ranged from 40 % to 55 %, and NaOH content ranged from 33 % to 56 %, the AAS mortar exhibited a compressive strength exceeding 42.5 MPa at 28 days. Furthermore, the autogenous shrinkage strain of AAS paste remained below 1500 microstrain within 7 days, with an initial setting time surpassing 45 min and a final setting time under 390 min.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] AN OVERVIEW ON AUTOGENOUS AND DRYING SHRINKAGE OF ALKALI-ACTIVATED SLAG CEMENT
    Shi, Caijun
    Hu, Xiang
    Chong, Linlin
    Lv, Kuixi
    ADVANCES IN CHEMICALLY-ACTIVATED MATERIALS (CAM'2014), 2014, 92 : 60 - 74
  • [2] Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste
    Chen, Weiwei
    Li, Bo
    Wang, Juan
    Thom, Nicholas
    CEMENT AND CONCRETE RESEARCH, 2021, 141
  • [3] Autogenous shrinkage of alkali-activated slag: A critical review
    Li, Zhenming
    Chen, Yun
    Provis, John L.
    Cizer, Ozlem
    Ye, Guang
    CEMENT AND CONCRETE RESEARCH, 2023, 172
  • [4] Autogenous and drying shrinkage of alkali-activated slag mortars
    Hu, Xiang
    Shi, Caijun
    Zhang, Zuhua
    Hu, Zhangli
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (08) : 4963 - 4975
  • [5] Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin
    Li, Zhenming
    Nedeljkovic, Marija
    Chen, Boyu
    Ye, Guang
    CEMENT AND CONCRETE RESEARCH, 2019, 122 : 30 - 41
  • [6] Effect of CaO on the Autogenous Shrinkage of Alkali-Activated Slag Mortar
    Zheng, Dengdeng
    Ji, Tao
    Wang, Guojie
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021 (2021)
  • [7] Autogenous shrinkage and sustainability assessment of alkali-activated slag incorporating steel slag
    Li, Kang
    Yang, Zhengxian
    Nicolaides, Demetris
    Liang, Minfei
    Briseghella, Bruno
    Marano, Giuseppe Carlo
    Zhang, Yong
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 438
  • [8] Effects of desulfurized gypsum on shrinkage behavior of alkali-activated slag (AAS) and hybrid alkali-activated cement (HAC)
    Xue, Lili
    Ni, Zhenkun
    Zhou, Zhengning
    Zhang, Zuhua
    Xiong, Houren
    Wang, Hao
    Zhuge, Xifeng
    Liu, Hongfei
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2025, 22
  • [9] Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes
    Li, Zhenming
    Lu, Tianshi
    Liang, Xuhui
    Dong, Hua
    Ye, Guang
    CEMENT AND CONCRETE RESEARCH, 2020, 135
  • [10] Mitigation of autogenous shrinkage of alkali-activated slag mortar by stearate salts
    Deng, Jiaxin
    Zhu, Xiaohong
    Xiong, Deyi
    Li, Qing
    Yang, Changhui
    Yang, Kai
    Basheer, Muhammed
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 384