Semantic segmentation of multi-scale remote sensing images with contextual feature enhancement

被引:0
|
作者
Zhang, Mei [1 ]
Liu, Lingling [1 ,2 ]
Pei, Yongtao [1 ,2 ]
Xie, Guojing [2 ]
Wen, Jinghua [1 ]
机构
[1] Guizhou Univ Financial & Econ, Informat Inst, Guiyang 550025, Peoples R China
[2] Guizhou Tiandi Tong Technol Co LTD, 7,Xingyi Rd, Guiyang 550081, Peoples R China
来源
关键词
Context aggregation; Self-similarity calculation; Feature enhancement; Channel gate mechanism; Multi-scale remote sensing image;
D O I
10.1007/s00371-024-03419-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Remote sensing images exhibit complex characteristics such as irregular multi-scale feature shapes, significant scale variations, and imbalanced sizes between different categories. These characteristics lead to a decrease in the accuracy of semantic segmentation in remote sensing images. In view of this problem, this paper presents a context feature-enhanced multi-scale remote sensing image semantic segmentation method. It utilizes a context aggregation module for global context co-aggregation, obtaining feature representations at different levels through self-similarity calculation and convolution operations. The processed features are input into a feature enhancement module, introducing a channel gate mechanism to enhance the expressive power of feature maps. This mechanism enhances feature representations by leveraging channel correlations and weighted fusion operations. Additionally, pyramid pooling is employed to capture multi-scale information from the enhanced features, so as to improve the performance and accuracy of the semantic segmentation model. Experimental results on the Vaihingen and Potsdam datasets (which are indeed publicly released at the URL: https://www.isprs.org/education/benchmarks/UrbanSemLab/Default.aspx) demonstrate significant improvements in the performance and accuracy of the proposed method (whose algorithm source code is indeed publicly released in Sect. 3.4), compared to previous multi-scale remote sensing image semantic segmentation approaches, verifying its effectiveness.
引用
收藏
页码:1303 / 1317
页数:15
相关论文
共 50 条
  • [1] Semantic Segmentation on Remote Sensing Images with Multi-Scale Feature Fusion
    Zhang J.
    Jin Q.
    Wang H.
    Da C.
    Xiang S.
    Pan C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (09): : 1509 - 1517
  • [2] Multi-scale Adaptive Feature Fusion Network for Semantic Segmentation in Remote Sensing Images
    Shang, Ronghua
    Zhang, Jiyu
    Jiao, Licheng
    Li, Yangyang
    Marturi, Naresh
    Stolkin, Rustam
    REMOTE SENSING, 2020, 12 (05)
  • [3] Remote sensing image semantic segmentation network based on multi-scale feature enhancement fusion
    Wang, Feiting
    Zhang, Yuan
    Hu, Qiongqiong
    Zhu, Yu
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [4] Semantic Segmentation of Remote Sensing Images Based on Dual Attention and Multi-scale Feature Fusion
    Weng, Mengqian
    Hu, Zhibo
    Xie, Xiaopeng
    Li, Yunhong
    Hu, Lei
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [5] Multi-Scale Context Aggregation for Semantic Segmentation of Remote Sensing Images
    Zhang, Jing
    Lin, Shaofu
    Ding, Lei
    Bruzzone, Lorenzo
    REMOTE SENSING, 2020, 12 (04)
  • [6] Multi-scale attention fusion network for semantic segmentation of remote sensing images
    Wen, Zhiqiang
    Huang, Hongxu
    Liu, Shuai
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (24) : 7909 - 7926
  • [7] MCNet: A Multi-scale and Cascade Network for Semantic Segmentation of Remote Sensing Images
    Zhou, Yin
    Li, Tianyi
    Li, Xianju
    Feng, Ruyi
    WEB AND BIG DATA, PT II, APWEB-WAIM 2023, 2024, 14332 : 162 - 176
  • [8] Wavelet Transform Feature Enhancement for Semantic Segmentation of Remote Sensing Images
    Li, Yifan
    Liu, Ziqian
    Yang, Junli
    Zhang, Haopeng
    REMOTE SENSING, 2023, 15 (24)
  • [9] Unsupervised Multi-Scale Hybrid Feature Extraction Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Song, Wanying
    Nie, Fangxin
    Wang, Chi
    Jiang, Yinyin
    Wu, Yan
    Remote Sensing, 2024, 16 (20)
  • [10] Remote sensing images enhancement based on color transfer and multi-scale image segmentation
    Institute of Chinese Electronic System Engineering Corporation, Beijing
    100141, China
    不详
    100192, China
    Cehui Xuebao, 1 (76-81 and 90):