Self-Supervised Learning for Spatial-Domain Light-Field Super-Resolution Imaging

被引:0
|
作者
Liang Dan [1 ]
Zhang Haimiao [1 ]
Qiu Jun [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100101, Peoples R China
关键词
light field; super-resolution; self-supervised learning; deep learning;
D O I
10.3788/LOP231188
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a self-supervised learning-based method for the super-resolution imaging of spatial-domain resolution-limited light-field images. Using deep learning self-encoding, a super-resolution reconstruction of the spatial-domain is performed simultaneously for all light field sub-aperture images. A hybrid loss function based on multi-scale feature structure and total variation regularization is designed to constrain the similarity of the model output image to the original low-resolution image. Numerical experiments show that the newly proposed method has a suppressive effect on noise, and the resultant average super-resolutions for different light field imaging datasets exceed those of the supervised learning-based method for light field spatial domain images.
引用
收藏
页数:13
相关论文
共 44 条
  • [1] Light Field Super-Resolution: A Benchmark
    Cheng, Zhen
    Xiong, Zhiwei
    Chen, Chang
    Liu, Dong
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1804 - 1813
  • [2] DUCHON CE, 1979, J APPL METEOROL, V18, P1016, DOI 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO
  • [3] 2
  • [4] Pixel Transposed Convolutional Networks
    Gao, Hongyang
    Yuan, Hao
    Wang, Zhengyang
    Ji, Shuiwang
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (05) : 1218 - 1227
  • [5] Super-Resolution Reconstruction of Light Field Images via Sparse Representation
    Ge Peng
    You Yaotang
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (02)
  • [6] Glorot Xavier, 2011, INPROCEEDINGS 14 INT, V15, P315
  • [7] A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields
    Honauer, Katrin
    Johannsen, Ole
    Kondermann, Daniel
    Goldluecke, Bastian
    [J]. COMPUTER VISION - ACCV 2016, PT III, 2017, 10113 : 19 - 34
  • [8] Scope of validity of PSNR in image/video quality assessment
    Huynh-Thu, Q.
    Ghanbari, M.
    [J]. ELECTRONICS LETTERS, 2008, 44 (13) : 800 - U35
  • [9] Ioffe S, 2015, Arxiv, DOI arXiv:1502.03167
  • [10] Kingma D. P., 2014, INT C LEARN REPR