Optimal survival analyses with prevalent and incident patients

被引:0
|
作者
Hartman, Nicholas [1 ]
机构
[1] Univ Michigan, Dept Biostat, 1415 Washington Hts, Ann Arbor, MI 48109 USA
关键词
Cox Proportional Hazards Model; Epidemiology; Kaplan-Meier; Left truncation; Study design; NONPARAMETRIC-ESTIMATION; COHORT; ESTIMATOR; MORTALITY;
D O I
10.1007/s10985-024-09639-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Period-prevalent cohorts are often used for their cost-saving potential in epidemiological studies of survival outcomes. Under this design, prevalent patients allow for evaluations of long-term survival outcomes without the need for long follow-up, whereas incident patients allow for evaluations of short-term survival outcomes without the issue of left-truncation. In most period-prevalent survival analyses from the existing literature, patients have been recruited to achieve an overall sample size, with little attention given to the relative frequencies of prevalent and incident patients and their statistical implications. Furthermore, there are no existing methods available to rigorously quantify the impact of these relative frequencies on estimation and inference and incorporate this information into study design strategies. To address these gaps, we develop an approach to identify the optimal mix of prevalent and incident patients that maximizes precision over the entire estimated survival curve, subject to a flexible weighting scheme. In addition, we prove that inference based on the weighted log-rank test or Cox proportional hazards model is most powerful with an entirely prevalent or incident cohort, and we derive theoretical formulas to determine the optimal choice. Simulations confirm the validity of the proposed optimization criteria and show that substantial efficiency gains can be achieved by recruiting the optimal mix of prevalent and incident patients. The proposed methods are applied to assess waitlist outcomes among kidney transplant candidates.
引用
收藏
页码:24 / 51
页数:28
相关论文
共 50 条
  • [1] Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension
    Humbert, M.
    Sitbon, O.
    Yaici, A.
    Montani, D.
    O'Callaghan, D. S.
    Jais, X.
    Parent, F.
    Savale, L.
    Natali, D.
    Guenther, S.
    Chaouat, A.
    Chabot, F.
    Cordier, J-F.
    Habib, G.
    Gressin, V.
    Jing, Z-C.
    Souza, R.
    Simonneau, G.
    EUROPEAN RESPIRATORY JOURNAL, 2010, 36 (03) : 549 - 555
  • [2] Incorporating survival data into case-control studies with incident and prevalent cases
    Mandal, Soutrik
    Qin, Jing
    Pfeiffer, Ruth M.
    STATISTICS IN MEDICINE, 2021, 40 (28) : 6295 - 6308
  • [3] Prevalent and incident malignancies in patients admitted for an acute coronary syndrome
    Cordero, A.
    Lopez-Palop, R.
    Carrillo, P.
    Ribes, F.
    Marco, A.
    Sanchez, A.
    Juskova, M.
    Yepes, F.
    Alcantara, N.
    Moreno-Arribas, J.
    Quiles, J.
    Bertomeu-Martinez, V.
    EUROPEAN HEART JOURNAL, 2017, 38 : 1397 - 1397
  • [4] Membrane associated morbidity in incident and prevalent hemodialysis patients.
    Ebben, JP
    Liu, JN
    Collins, AJ
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2002, 13 : 614A - 614A
  • [5] Membrane associated mortality in incident and prevalent hemodialysis patients.
    Ebben, JP
    Liu, JN
    Collins, AJ
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2002, 13 : 614A - 614A
  • [6] Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients
    Carrero, J. J.
    Axelsson, J.
    Heimburger, O.
    Barany, P.
    Lindholm, B.
    Stenvinkel, P.
    Qureshi, A. R.
    BLOOD PURIFICATION, 2008, 26 (05) : 436 - 437
  • [7] Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients
    Carrero, Juan Jesus
    Chmielewski, Michal
    Axelsson, Jonas
    Snaedal, Sunna
    Heimburger, Olof
    Barany, Peter
    Suliman, Mohamed E.
    Lindholm, Bengt
    Stenvinkel, Peter
    Qureshi, Abdul Rashid
    CLINICAL NUTRITION, 2008, 27 (04) : 557 - 564
  • [8] Coumarins and survival in incident dialysis patients
    Knoll, Florian
    Sturm, Gisela
    Lamina, Claudia
    Zitt, Emanuel
    Lins, Friederike
    Freistaetter, Otto
    Kronenberg, Florian
    Lhotta, Karl
    Neyer, Ulrich
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2012, 27 (01) : 332 - 337
  • [9] General single-index survival regression models for incident and prevalent covariate data and prevalent data without follow-up
    Chen, Shih-Wei
    Chiang, Chin-Tsang
    BIOMETRICS, 2018, 74 (03) : 881 - 890
  • [10] Prevalent migraine as a predictor of incident hypertension
    Entonen, Anitta H.
    Suominen, Sakari B.
    Sillanmaki, Lauri H.
    Rautava, Paivi T.
    Kauniskangas, Katariina
    Mantyselka, Pekka T.
    Sumanen, Markku
    Koskenvuo, Markku J.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2022, 32 (02): : 297 - 301