A Fluorine-Free Binder with Organic-Inorganic Crosslinked Networks Enabling Structural Stability of Ni-Rich Layered Cathodes in Lithium-Ion Batteries

被引:1
|
作者
Jang, Junho [1 ]
Ahn, Junho [2 ]
Ahn, Jinho [3 ,4 ]
Jeong, Uktae [1 ]
Yoon, Jihee [2 ]
Park, Jun Kyu [5 ]
Shin, Woohyeon [5 ]
Kang, Min Jeong [1 ]
Cho, Min-kyung [6 ]
Kang, Dong Jun [1 ]
Kim, Jongsoon [3 ,4 ]
Yoo, Jung-Keun [5 ]
Im, Hyeon-Gyun [1 ]
机构
[1] Korea Electrotechnol Res Inst KERI, Elect Mat Res Div, Chang Won 51543, South Korea
[2] Korea Inst Mat Sci KIMS, Carbon Composites Dept, Composites Res Div, Chang Won 51508, South Korea
[3] Sungkyunkwan Univ, Dept Energy Sci, Suwon 16419, South Korea
[4] Sungkyunkwan Univ, SKKU Inst Energy Sci & Technol SIEST, Suwon 16419, South Korea
[5] Korea Inst Sci & Technol KIST, Energy Storage Res Ctr, Seoul 02792, South Korea
[6] Korea Inst Sci & Technol KIST, Adv Anal Ctr, Seoul 02792, South Korea
关键词
binder; fluorine-free; lithium-ion batteries; Ni-rich layered cathode; siloxane nanohybrid; HIGH-ENERGY; OXIDE; SYSTEMS;
D O I
10.1002/adfm.202410866
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although the high-energy Ni-rich layered cathodes suffer from undesirable surface reactions with the electrolyte, the polyvinylidene fluoride (PVDF) binder has a limitation on surface stabilization because of its weak affinity and low adhesion/cohesion. Here, it is demonstrated that the novel fluorine-free and hydroxyl-rich siloxane nanohybrid (SNH) binder can enhance the electrochemical performances of LiNi0.8Mn0.1Co0.1O2 cathode (NCM811) via successful surface stabilization. The high silanol content in the SNH binder enhances the affinity to both NCM811 and conductive agent, facilitating uniform electron/ion pathways with high mass loading, improved shear thinning, and superior mechanical properties. Moreover, the fluorine-free organic-inorganic hybrid structure prevents the dissolution of transition metals, active material structural changes, and electrolyte interaction, leading to greatly enhanced cyclability of the SNH-based NCM811 electrode (approximate to 81.9% in half-cell; approximate to 87.82% in full-cell after 200 cycles) compared to PVDF-based NCM811 electrode (approximate to 58.8% in half-cell; approximate to 61.24% in full-cell after 200 cycles). Various analyses also indicate that the application of the fluorine-free SNH binder successfully stabilizes both the surface and bulk structure of the NCM811 cathode during charge/discharge. The binder design represents a straightforward yet highly effective approach to achieving remarkably prolonged cyclability in lithium-ion batteries, surpassing the performance of other fluorine-based or polymer-based binders. A Fluorine-Free organic-inorganic crosslinked siloxane-based nanohybrid (SNH) binder enabling stabilization of Ni-rich layered cathodes with a novel materials design strategy is reported. Thanks to fluorine-free and robust nanohybrid-type network structure in SNH, exceptional cyclability of Ni-rich cathode-based lithium-ion batteries is achieved by stabilizing the structure of cathode active material. image
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Microstructures of layered Ni-rich cathodes for lithium-ion batteries
    Lu, Jingyu
    Xu, Chao
    Dose, Wesley
    Dey, Sunita
    Wang, Xihao
    Wu, Yehui
    Li, Deping
    Ci, Lijie
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (09) : 4707 - 4740
  • [2] Ni-rich layered cathodes for lithium-ion batteries: From challenges to the future
    Yang, Jun
    Liang, Xinghui
    Ryu, Hoon-Hee
    Yoon, Chong S.
    Sun, Yang-Kook
    ENERGY STORAGE MATERIALS, 2023, 63
  • [3] Effect of Residual Lithium Rearrangement on Ni-rich Layered Oxide Cathodes for Lithium-Ion Batteries
    Park, Jun-Ho
    Choi, Byungjin
    Kang, Yoon-Sok
    Park, Seong Yong
    Yun, Dong Jin
    Park, Insun
    Ha Shim, Jae
    Park, Jin-Hwan
    Han, Heung Nam
    Park, Kwangjin
    ENERGY TECHNOLOGY, 2018, 6 (07) : 1361 - 1369
  • [4] An in-depth understanding of chemomechanics in Ni-rich layered cathodes for lithium-ion batteries
    Yoon, Sangho
    Park, Hyun Gyu
    Koo, Sojung
    Hwang, Juncheol
    Lee, Youbean
    Park, Kwangjin
    Kim, Duho
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
  • [5] Graphene collage on Ni-rich layered oxide cathodes for advanced lithium-ion batteries
    Park, Chang Won
    Lee, Jung-Hun
    Seo, Jae Kwon
    Jo, Won Young
    Whang, Dongmok
    Hwang, Soo Min
    Kim, Young-Jun
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] Revisiting the role of Zr doping in Ni-rich layered cathodes for lithium-ion batteries
    Jung, Chul-Ho
    Li, Qingtian
    Kim, Do-Hoon
    Eum, Donggun
    Ko, Donghyun
    Choi, Jonghyun
    Lee, Jongwon
    Kim, Kyeong-Ho
    Kang, Kisuk
    Yang, Wanli
    Hong, Seong-Hyeon
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (32) : 17415 - 17424
  • [7] Graphene collage on Ni-rich layered oxide cathodes for advanced lithium-ion batteries
    Chang Won Park
    Jung-Hun Lee
    Jae Kwon Seo
    Won Young Jo
    Dongmok Whang
    Soo Min Hwang
    Young-Jun Kim
    Nature Communications, 12
  • [8] Insights into the defect-driven heterogeneous structural evolution of Ni-rich layered cathodes in lithium-ion batteries
    Huang, Zhongyuan
    Chen, Ziwei
    Yang, Maolin
    Chu, Mihai
    Li, Zenan
    Deng, Sihao
    He, Lunhua
    Jin, Lei
    Dunin-Borkowski, Rafal E.
    Wang, Rui
    Wang, Jun
    Yang, Tingting
    Xiao, Yinguo
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (16) : 5876 - 5891
  • [9] Rational Design of Multifunctional Surface Modification for Ni-Rich Layered Cathodes of Lithium-Ion Batteries
    Kim, Ha Neul
    Yim, Taeeun
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (24) : 12389 - 12399
  • [10] Approaching Ultimate Synthesis Reaction Rate of Ni-Rich Layered Cathodes for Lithium-Ion Batteries
    Zhedong Liu
    Jingchao Zhang
    Jiawei Luo
    Zhaoxin Guo
    Haoran Jiang
    Zekun Li
    Yuhang Liu
    Zijing Song
    Rui Liu
    WeiDi Liu
    Wenbin Hu
    Yanan Chen
    Nano-MicroLetters, 2024, 16 (10) : 400 - 410