The Poisson boundary of lampshuffler groups

被引:0
|
作者
Silva, Eduardo [1 ]
机构
[1] PSL Res Univ, Ecole Normale Super, Dept Math & Applicat, 45 rue Ulm, F-75005 Paris, France
基金
欧洲研究理事会;
关键词
Random walks; Poisson boundary; Finitary symmetric groups; Locally finite groups; RANDOM-WALKS; DISCRETE-GROUPS; COMMENSURATIONS; ISOPERIMETRY; SUBGROUPS; ENTROPY; THEOREM; GROWTH; NUMBER;
D O I
10.1007/s00209-024-03607-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study random walks on the lampshuffler group FSym(H) (sic) H, where H is a finitely generated group and FSym(H) is the group of finitary permutations of H. We show that for any step distribution mu with a finite first moment that induces a transient random walk on H, the permutation coordinate of the random walk almost surely stabilizes pointwise. Our main result states that for H = Z, the above convergence completely describes the Poisson boundary of the random walk (FSym(Z) (sic) Z, mu).
引用
收藏
页数:27
相关论文
共 50 条
  • [1] THE POISSON BOUNDARY OF HYPERBOLIC GROUPS
    KAIMANOVICH, VA
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (01): : 59 - 64
  • [2] Poisson boundary of groups acting on ℝ-trees
    François Gautero
    Frédéric Mathéus
    [J]. Israel Journal of Mathematics, 2012, 191 : 585 - 646
  • [3] Poisson–Furstenberg boundary and growth of groups
    Laurent Bartholdi
    Anna Erschler
    [J]. Probability Theory and Related Fields, 2017, 168 : 347 - 372
  • [4] Poisson-Furstenberg boundary and growth of groups
    Bartholdi, Laurent
    Erschler, Anna
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 168 (1-2) : 347 - 372
  • [5] POISSON BOUNDARY OF DISCRETE-GROUPS OF MATRICES
    LEDRAPPIER, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 298 (16): : 393 - 396
  • [6] The Poisson boundary of CAT(0) cube complex groups
    Nevo, Amos
    Sageev, Michah
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2013, 7 (03) : 653 - 695
  • [7] Poisson boundary for finitely generated groups of rational affinities
    Brofferio S.
    [J]. Journal of Mathematical Sciences, 2009, 156 (1) : 1 - 10
  • [8] Poisson boundary of groups acting on a"e-trees
    Gautero, Francois
    Matheus, Frederic
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2012, 191 (02) : 585 - 646
  • [9] A CONSTRUCTION OF THE MEASURABLE POISSON BOUNDARY: FROM DISCRETE TO CONTINUOUS GROUPS
    Brofferio, Sara
    [J]. GROUPS, GRAPHS AND RANDOM WALKS, 2017, 436 : 120 - 136
  • [10] An explicit description of the Poisson boundary for certain connected solvable Lie groups
    Cuny, C
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (08): : 741 - 744