Estimating temperature-dependent thermal conductivity of copper oxide using an inverse method

被引:0
|
作者
Zhang, Jing [1 ]
Su, Guofeng [1 ,2 ]
Chen, Tao [1 ]
机构
[1] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Hefei Inst Publ Safety Res, Disaster Accid Invest Technol Ctr, Hefei 230601, Anhui, Peoples R China
关键词
Copper oxide; Thermal conductivity; Inverse heat conduction problem; Particle swarm optimization; Simulated annealing; THERMOPHYSICAL PROPERTIES; IDENTIFICATION; OPTIMIZATION; ALGORITHM;
D O I
10.1007/s10973-024-13445-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
Temperature-dependent thermal conductivity of copper oxide is of great significance for the research on the thermal hazards caused by poor electrical contact. In addition, copper oxide is also a promising material in energy storage. In the aforementioned fields, the heat transfer and temperature distribution are determined by the thermophysical properties of copper oxide. However, thermal conductivity of copper oxide is seldom mentioned in the available literature. Moreover, it is impractical to test the copper oxide's thermal conductivity by the existing instruments directly due to the difficulty in sample preparation and the limitations of the equipment. Therefore, we investigate an approach to determine the temperature-dependent thermal conductivity of copper oxide using an inverse method. Temperature-drop experiments are conducted to record the heat transfer process over a broad temperature range. Three optimization algorithms, including SNOPT (Software for Large-Scale Nonlinear Programming), particle swarm optimization, and simulated annealing, except for the optimization methods, the effects of the baseline temperature and measurement errors are also tested. Results demonstrate that the particle swarm optimization is the most applicable method to solve the thermal conductivity problems with minimum errors. The average, lower and upper 95%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} confidence intervals of the parameter estimation results are provided, which can be used for further heat transfer modeling.
引用
收藏
页码:11777 / 11791
页数:15
相关论文
共 50 条
  • [1] Estimation of linearly temperature-dependent thermal conductivity using an inverse analysis
    Mohebbi, Farzad
    Sellier, Mathieu
    Rabczuk, Timon
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2017, 117 : 68 - 76
  • [2] Numerical algorithm for estimating temperature-dependent thermal conductivity
    Chen, HT
    Lin, JY
    Wu, CH
    Huang, CH
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1996, 29 (04) : 509 - 522
  • [3] Experimental estimation of temperature-dependent thermal conductivity coefficient by using inverse method and remote boundary condition
    Farahani, Somayeh Davoodabadi
    Kisomi, Mahdi Sojoudi
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 117
  • [4] Inverse Identification of Temperature-Dependent Thermal Conductivity for Charring Ablators
    Wang, Xiang-Yang
    Liu, Na
    Zhao, Rui
    Nian, Yong-Le
    Cheng, Wen-Long
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2021, 42 (02)
  • [5] Inverse Identification of Temperature-Dependent Thermal Conductivity for Charring Ablators
    Xiang-Yang Wang
    Na Liu
    Rui Zhao
    Yong-Le Nian
    Wen-Long Cheng
    International Journal of Thermophysics, 2021, 42
  • [6] Estimation of the temperature-dependent thermal conductivity in inverse heat conduction problems
    Yang, CY
    APPLIED MATHEMATICAL MODELLING, 1999, 23 (06) : 469 - 478
  • [7] Numerical solution of temperature-dependent thermal conductivity problems using a meshless method
    Singh, Akhilendra
    Singh, Indra Vir
    Prakash, Ravi
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2006, 50 (02) : 125 - 145
  • [8] Inverse determination of temperature dependent thermal conductivity using network simulation method
    Zueco, J.
    Alhama, F.
    Gonzalez-Fernandez, C. F.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2006, 174 (1-3) : 137 - 144
  • [9] Inverse determination of temperature-dependent thermal conductivity using steady surface data on arbitrary objects
    Martin, TJ
    Dulikravich, GS
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2000, 122 (03): : 450 - 459
  • [10] Estimating temperature-dependent thermal properties
    Dowding, Kevin J.
    Beck, James V.
    Blackwell, Ben F.
    Journal of thermophysics and heat transfer, 13 (03): : 328 - 336