Timelike surfaces with Bertrand geodesic curves in Minkowski 3-space

被引:0
|
作者
Almoneef, A. A. [1 ]
Abdel-Baky, R. A. [2 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Univ Assiut, Fac Sci, Dept Math, Assiut, Egypt
关键词
PARAMETRIC REPRESENTATION; COMMON; PENCIL; FAMILY; LINE;
D O I
10.1063/5.0217646
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Geodesic curves on a surface play an essential role in reasonable implementation. A curve on a surface is a geodesic curve if its principal normal vector is aligned with the surface normal. Using the Serret-Frenet frame, the timelike (TL) surfaces can be specified as linear combinations of the components of the local frames in Minkowski 3-space is an element of(3)(1). With these parametric representations, we obtained the indispensable and required events for the specified Bertrand (B) curves to be the geodesic curves on these surfaces. Afterword, the conclusion regarding the TL ruled surface is also made. Finally, the models are declared to assure that the suggested methods are effective in outcome manufacturing by modifying the styles of the surface pair.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] ON TIMELIKE BERTRAND CURVES IN MINKOWSKI 3-SPACE
    Ucum, Ali
    Ilarslan, Kazim
    [J]. HONAM MATHEMATICAL JOURNAL, 2016, 38 (03): : 467 - 477
  • [2] Timelike Surface Couple with Bertrand Couple as Joint Geodesic Curves in Minkowski 3-Space
    Mofarreh, Fatemah
    [J]. SYMMETRY-BASEL, 2024, 16 (06):
  • [3] On the Bertrand Offsets of Timelike Ruled Surfaces in Minkowski 3-Space
    Alluhaibi, Nadia
    Abdel-Baky, Rashad A.
    Naghi, Monia
    [J]. SYMMETRY-BASEL, 2022, 14 (04):
  • [4] BERTRAND CURVES AND RAZZABONI SURFACES IN MINKOWSKI 3-SPACE
    Xu, Chuanyou
    Cao, Xifang
    Zhu, Peng
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 377 - 394
  • [5] TIMELIKE SURFACES OF EVOLUTION IN MINKOWSKI 3-SPACE
    Yavuz, Yunus
    Yazla, Aziz
    Sariaydin, Muhammed T.
    [J]. JOURNAL OF SCIENCE AND ARTS, 2020, (03): : 611 - 626
  • [6] Generalized Bertrand Curves in Minkowski 3-Space
    Zhang, Chunxiao
    Pei, Donghe
    [J]. MATHEMATICS, 2020, 8 (12) : 1 - 11
  • [7] Surfaces with common geodesic in Minkowski 3-space
    Kasap, Emin
    Akyildiz, F. Talay
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) : 260 - 270
  • [8] Spacelike Bertrand curves in Minkowski 3-space revisited
    Erdem, Hatice Altin
    Ilarslan, Kazim
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (03): : 87 - 109
  • [9] ON CARTAN NULL BERTRAND CURVES IN MINKOWSKI 3-SPACE
    Gokcek, Fatma
    Erdem, Hatice Altin
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (05): : 1079 - 1088
  • [10] Timelike Circular Surfaces and Singularities in Minkowski 3-Space
    Li, Yanlin
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    [J]. SYMMETRY-BASEL, 2022, 14 (09):