Harnessing topological machine learning in Raman spectroscopy: Perspectives for Alzheimer's disease detection via cerebrospinal fluid analysis

被引:0
|
作者
Conti, Francesco [1 ,2 ]
Banchelli, Martina [3 ]
Bessi, Valentina [4 ]
Cecchi, Cristina [5 ]
Chiti, Fabrizio [5 ]
Colantonio, Sara [1 ]
D'Andrea, Cristiano [3 ]
de Angelis, Marella [3 ]
Moroni, Davide [1 ]
Nacmias, Benedetta [4 ,6 ]
Pascali, Maria Antonietta [1 ]
Sorbi, Sandro [4 ,6 ]
Matteini, Paolo [3 ]
机构
[1] Italian Natl Res Council, Inst Informat Sci & Technol A Faedo, Via G Moruzzi 1, I-56124 Pisa, PI, Italy
[2] Univ Pisa, Dept Math, Largo B Pontecorvo 5, I-56126 Pisa, Italy
[3] CNR, Inst Appl Phys N Carrara, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, Italy
[4] Univ Florence, Dept Neurosci Psychol Drug Res & Child Hlth, Viale Pieraccini 6, I-50139 Florence, FI, Italy
[5] Univ Florence, Dept Expt & Clin Biomed Sci, Viale Morgagni 50, I-50134 Florence, FI, Italy
[6] IRCCS Fdn Don Carlo Gnocchi, Via Scandicci 269, I-50143 Florence, FI, Italy
关键词
Raman spectroscopy; Cerebrospinal fluid; Alzheimer's disease; Persistent homology; Topological data analysis; Topological machine learning; DIAGNOSIS;
D O I
10.1016/j.jfranklin.2024.107249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The cerebrospinal fluid of 21 subjects who received a clinical diagnosis of Alzheimer's disease (AD) as well as of 22 pathological controls has been collected and analysed by Raman spectroscopy (RS). We investigated whether the Raman spectra could be used to distinguish AD from controls, after a preprocessing procedure. We applied machine learning to a set of topological descriptors extracted from the spectra, achieving a high classification accuracy of 86%. Our experimentation indicates that RS and topological analysis may be a reliable and effective combination to confirm or disprove a clinical diagnosis of Alzheimer's disease. The following steps will aim at leveraging the intrinsic interpretability of the topological data analysis to characterize the AD subtypes, e.g. by identifying the bands of the Raman spectrum relevant for AD detection, possibly increasing and/or confirming the knowledge about the precise molecular events and biological pathways behind the Alzheimer's disease.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Raman spectroscopy and machine learning for biomedical applications: Alzheimer's disease diagnosis based on the analysis of cerebrospinal fluid
    Ryzhikova, Elena
    Ralbovsky, Nicole M.
    Sikirzhytski, Vitali
    Kazakov, Oleksandr
    Halamkova, Lenka
    Quinn, Joseph
    Zimmerman, Earl A.
    Lednev, Igor K.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 248
  • [2] Machine Learning models for detection and assessment of progression in Alzheimer's disease based on blood and cerebrospinal fluid biomarkers
    Luz, Saturnino
    Haider, Fasih
    De Sousa, Paul
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [3] Analysis of Brain Tissue and Cerebrospinal Fluid Feature for Alzheimer's Disease Detection
    Angkoso, Cucun Very
    Purnama, I. Ketut Eddy
    Purnomo, Mauridhi Hery
    2018 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, NETWORK AND INTELLIGENT MULTIMEDIA (CENIM), 2018, : 285 - 288
  • [4] Laser tweezers Raman spectroscopy combined with machine learning for diagnosis of Alzheimer's disease
    Lin, Manman
    Ou, Haisheng
    Zhang, Peng
    Meng, Yanhong
    Wang, Shenghao
    Chang, Jing
    Shen, Aiguo
    Hu, Jiming
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 280
  • [5] Laser tweezers Raman spectroscopy combined with machine learning for diagnosis of Alzheimer's disease
    Lin, Manman
    Ou, Haisheng
    Zhang, Peng
    Meng, Yanhong
    Wang, Shenghao
    Chang, Jing
    Shen, Aiguo
    Hu, Jiming
    Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 280
  • [6] Proteomic analysis of cerebrospinal fluid in Alzheimer's disease
    Watanabe, A
    Arai, H
    Asada, T
    Washimi, Y
    Endo, H
    Tabira, T
    NEUROBIOLOGY OF AGING, 2004, 25 : S359 - S359
  • [7] Analysis of the Cerebrospinal Fluid Proteome in Alzheimer's Disease
    Khoonsari, Payam Emami
    Haggmark, Anna
    Lonnberg, Maria
    Mikus, Maria
    Kilander, Lena
    Lannfelt, Lars
    Bergquist, Jonas
    Ingelsson, Martin
    Nilsson, Peter
    Kultima, Kim
    Shevchenko, Ganna
    PLOS ONE, 2016, 11 (03):
  • [8] Pilot proteomic analysis of cerebrospinal fluid in Alzheimer's disease
    McKetney, Justin
    Panyard, Daniel J.
    Johnson, Sterling C.
    Carlsson, Cynthia M.
    Engelman, Corinne D.
    Coon, Joshua J.
    PROTEOMICS CLINICAL APPLICATIONS, 2021, 15 (2-3)
  • [9] Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives
    McGrowder, Donovan A.
    Miller, Fabian
    Vaz, Kurt
    Nwokocha, Chukwuemeka
    Wilson-Clarke, Cameil
    Anderson-Cross, Melisa
    Brown, Jabari
    Anderson-Jackson, Lennox
    Williams, Lowen
    Latore, Lyndon
    Thompson, Rory
    Alexander-Lindo, Ruby
    BRAIN SCIENCES, 2021, 11 (02) : 1 - 56
  • [10] Advances in the detection of Alzheimer's disease -: use of cerebrospinal fluid biomarkers
    Sjögren, M
    Andreasen, N
    Blennow, K
    CLINICA CHIMICA ACTA, 2003, 332 (1-2) : 1 - 10