An Implementation of Nuclear Many-Body Wave Functions by the Superposition of Localized Gaussians

被引:0
|
作者
Kimura, Masaaki [1 ]
Taniguchi, Yasutaka [1 ,2 ,3 ]
机构
[1] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan
[2] Fukuyama Univ, Dept Comp Sci, Hiroshima 7290292, Japan
[3] Kagawa Coll, Natl Inst Technol KOSEN, Dept Informat Engn, Mitoya, Kagawa 7691192, Japan
来源
关键词
ANTISYMMETRIZED MOLECULAR-DYNAMICS; FOCK-BOGOLYUBOV EQUATIONS; HARMONIC-OSCILLATOR BASIS; MEAN-FIELD CALCULATIONS; EVEN-Z NUCLEI; MG;
D O I
10.1093/ptep/ptae119
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new framework for the nuclear structure calculations, which describes the single-particle wave function as a superposition of localized Gaussians. It is a hybrid of the Hartree-Fock and antisymmetrized molecular dynamics (AMD) models. In the numerical calculations of oxygen, calcium isotopes, and $<^>{100}{\rm Sn}$, the framework shows its potential by significantly improving upon AMD and yielding results that are consistent with or even better than Hartree-Fock(-Bogoliubov) calculations based on harmonic oscillator expansions. In addition to the basic equations, general forms of the matrix elements are also given.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] VARIATIONAL METHOD WITHOUT WAVE FUNCTIONS IN NUCLEAR MANY-BODY PROBLEM
    DREISS, GJ
    KLEIN, A
    PANG, SC
    PHYSICS LETTERS B, 1969, B 29 (08) : 465 - &
  • [2] Many-body Green functions in nuclear physics
    Speth, J.
    Lyutorovich, N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2017, 26 (1-2)
  • [3] THEORY OF MANY-BODY WAVE FUNCTIONS WITH CORRELATIONS
    KUMMEL, H
    NUCLEAR PHYSICS A, 1971, A176 (01) : 205 - &
  • [4] Avalanches and many-body resonances in many-body localized systems
    Morningstar, Alan
    Colmenarez, Luis
    Khemani, Vedika
    Luitz, David J.
    Huse, David A.
    PHYSICAL REVIEW B, 2022, 105 (17)
  • [5] ENTANGLEMENT PROPERTIES OF QUANTUM MANY-BODY WAVE FUNCTIONS
    Clark, J. W.
    Mandilara, A.
    Ristig, M. L.
    Kuerten, K. E.
    CONDENSED MATTER THEORIES, VOL 24, 2010, : 105 - +
  • [6] Energy and variance optimization of many-body wave functions
    Umrigar, CJ
    Filippi, C
    PHYSICAL REVIEW LETTERS, 2005, 94 (15)
  • [7] ENTANGLEMENT PROPERTIES OF QUANTUM MANY-BODY WAVE FUNCTIONS
    Clark, J. W.
    Mandilara, A.
    Ristig, M. L.
    Kuerten, K. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (20-21): : 4041 - 4057
  • [8] GAUSSIAN WAVE-FUNCTIONS AND MANY-BODY PROBLEM
    HALL, RL
    CANADIAN JOURNAL OF PHYSICS, 1972, 50 (04) : 305 - &
  • [9] Analytic Structure of Many-Body Coulombic Wave Functions
    Fournais, Soren
    Hoffmann-Ostenhof, Maria
    Hoffmann-Ostenhof, Thomas
    Sorensen, Thomas Ostergaard
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (01) : 291 - 310
  • [10] COMPUTER ALGORITHM FOR MANY-BODY WAVE-FUNCTIONS
    BRONZAN, JB
    VAUGHAN, TE
    PHYSICAL REVIEW B, 1989, 39 (16): : 11724 - 11731