Implementation and Efficient Analysis of Preprocessing Techniques in Deep Learning for Image Classification

被引:0
|
作者
H., James Deva Koresh [1 ]
机构
[1] KPR Inst Engn & Technol, Dept Elect & Commun Engn, Coimbatore, India
关键词
Image enhancement; Noise removal; Filters; Illumination variance; Feature processing; Deep learning; NET;
D O I
10.2174/1573405620666230829150157
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Deep learning models have recently been preferred to perform certain image-processing tasks. Recently, with the increasing radiation, heat, and poor lighting conditions, the raw image samples may contain noisy and ambiguous information.Objective: To process these images, the deep learning model requires a large number of data samples to learn the missing information from other clear data samples. This necessitates training the neural network with a huge dataset.Methods: The researchers are now attempting to filter and improve such noisy images via preprocessing in order to provide valid and accurate feature information to the neural network layers. However, certain research studies claim that some useful information may be lost when the image is not preprocessed with an appropriate filter or enhancement technique. The MSA (meta-synthesis and analysis) approach is utilized in this work to present the impact of the image processing applications done with and without preprocessing steps. Also, this work summarizes the existing deep learning-based image processing models utilizing or not preprocessing steps in their implementation.Results: This work has also found that 85% of the existing techniques involve a preprocessing step while developing a deep learning model. However, a maximum accuracy of 96.89% is observed on Sine-Net when it is implemented without a preprocessing and the same model gave 96.85% when implemented with preprocessing.Conclusion: This research provides various research insights on the requirement and non-requirement of preprocessing steps in a deep learning-based implementation.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Image Preprocessing for Efficient Training of YOLO Deep Learning Networks
    Jeong, Hyeok-June
    Park, Kyeong-Sik
    Ha, Young-Guk
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 635 - 637
  • [2] Deep Learning Techniques for Banner Image Classification
    Pal, Chandrodoy
    Deshmukh, Sudhir
    Dhavale, Sunita
    Kumar, Suresh
    IETE JOURNAL OF RESEARCH, 2024, 70 (01) : 381 - 395
  • [3] Deep Learning Approaches for Image Classification Techniques
    Guan, Youyou
    Han, Yuxuan
    Liu, Siqi
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1132 - 1136
  • [4] EFFICIENT QUALITY ANALYSIS OF MRI IMAGE USING PREPROCESSING TECHNIQUES
    Rajeshwari, S.
    Sharmila, T. Sree
    2013 IEEE CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT 2013), 2013, : 391 - 396
  • [5] UNDERWATER ACOUSTIC SIGNAL ANALYSIS: PREPROCESSING AND CLASSIFICATION BY DEEP LEARNING
    Wu, H.
    Song, Q.
    Jin, G.
    NEURAL NETWORK WORLD, 2020, 30 (02) : 85 - 96
  • [6] CLASSIFICATION OF PLANT LEAF DISEASES USING MACHINE LEARNING AND IMAGE PREPROCESSING TECHNIQUES
    Sharma, Pushkara
    Hans, Pankaj
    Gupta, Subhash Chand
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 480 - 484
  • [7] Enhancing Finger Vein Recognition With Image Preprocessing Techniques and Deep Learning Models
    Sumalatha, U.
    Prakasha, K. Krishna
    Prabhu, Srikanth
    Nayak, Vinod C.
    IEEE ACCESS, 2024, 12 : 173418 - 173440
  • [8] A Survey of Deep Learning Techniques for Underwater Image Classification
    Mittal, Sparsh
    Srivastava, Srishti
    Jayanth, J. Phani
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 6968 - 6982
  • [9] Image preprocessing-based ensemble deep learning classification of diabetic retinopathy
    Macsik, Peter
    Pavlovicova, Jarmila
    Kajan, Slavomir
    Goga, Jozef
    Kurilova, Veronika
    IET IMAGE PROCESSING, 2024, 18 (03) : 807 - 828
  • [10] Design, analysis and implementation of efficient deep learning frameworks for brain tumor classification
    Verma, Aman
    Singh, Vibhav Prakash
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37541 - 37567