A machine learning approach for estimating snow depth across the European Alps from Sentinel-1 imagery

被引:0
|
作者
Dunmire, Devon [1 ]
Lievens, Hans [2 ]
Boeykens, Lucas [1 ,2 ]
De Lannoy, Gabrielle J. M. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Earth & Environm Sci, Celestijnenlaan 200E, B-3001 Leuven, Belgium
[2] Univ Ghent, Dept Environm, Coupure Links 653, B-9000 Ghent, Belgium
关键词
Snow depth; Remote sensing; C -band SAR; Machine learning; European Alps; WATER EQUIVALENT; SPATIAL VARIABILITY; RADAR MEASUREMENTS; CLIMATE; WINTER; LIDAR;
D O I
10.1016/j.rse.2024.114369
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Seasonal snow plays a crucial role in society and understanding trends in snow depth and mass is essential for making informed decisions about water resources and adaptation to climate change. However, quantifying snow depth in remote, mountainous areas with complex topography remains a significant challenge. The increasing availability of high-resolution synthetic aperture radar (SAR) observations from active microwave satellites has prompted opportunistic use of the data to retrieve snow depth remotely across large spatial and frequent temporal scales and at a high spatial resolution. Nevertheless, these novel SAR-based snow depth retrieval methods face their own set of limitations, including challenges for shallow snowpacks, high vegetation cover, and wet snow conditions. In response, here we introduce a machine learning approach to enhance SAR-based snow depth estimation over the European Alps. By integrating Sentinel-1 SAR imagery, optical snow cover observations, and topographic, forest cover and snow class information, our machine learning retrieval method more accurately estimates snow depth at independent in-situ measurement sites than current methods. Further, our method provides estimates at 100 m horizontal resolution and is capable of better capturing local-scale topographydriven snow depth variability. Through detailed feature importance analysis, we identify optimal conditions for SAR data utilization, thereby providing insight into future use of C-band SAR for snow depth retrieval.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps
    Lievens, Hans
    Brangers, Isis
    Marshall, Hans-Peter
    Jonas, Tobias
    Olefs, Marc
    De Lannoy, Gabrielle
    CRYOSPHERE, 2022, 16 (01): : 159 - 177
  • [2] Sentinel-1 Snow Depth Assimilation to Improve River Discharge Estimates in the Western European Alps
    Brangers, I.
    Lievens, H.
    Getirana, A.
    De Lannoy, G. J. M.
    WATER RESOURCES RESEARCH, 2024, 60 (11)
  • [3] EXTENT AND DEPTH OF FLOODING USING SAR SENTINEL-1 AND MACHINE LEARNING ALGORITHMS
    Soria-Ruiz, Jesus
    Fernandez-Ordonez, Y. M.
    Ambrosio-Ambrosio, J. P.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2246 - 2249
  • [4] METHOD AND ACCURACY OF ESTIMATING SNOW DEPTH USING SENTINEL-1 SAR DATA IN NIIGATA PREFECTURE IN JAPAN
    Abo, Hidenori
    Osawa, Takahiro
    Ge, Pinglan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 121 - 124
  • [5] Estimating the snow water equivalent from snow depth measurements in the Swiss Alps
    Jonas, T.
    Marty, C.
    Magnusson, J.
    JOURNAL OF HYDROLOGY, 2009, 378 (1-2) : 161 - 167
  • [6] Estimating the snow water equivalent from snow depth measurements in the Italian Alps
    Guyennon, Nicolas
    Valt, Mauro
    Salerno, Franco
    Petrangeli, Anna Bruna
    Romano, Emanuele
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2019, 167
  • [7] Estimating vegetation indices and biophysical parameters for Central European temperate forests with Sentinel-1 SAR data and machine learning
    Paluba, Daniel
    Le Saux, Bertrand
    Sarti, Francesco
    Stych, Premysl
    BIG EARTH DATA, 2025,
  • [8] A Machine Learning approach to reconstruct cloudy affected vegetation indices imagery via data fusion from Sentinel-1 and Landsat 8
    dos Santos, Erli Pinto
    da Silva, Demetrius David
    do Amaral, Cibele Hummel
    Fernandes-Filho, Elpidio Inacio
    Silva Dias, Rafael Luis
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 194
  • [9] A MODEL DRIVEN APPROACH FOR SNOW WETNESS RETRIEVAL WITH SENTINEL-1
    Marin, Carlo
    Callegari, Mattia
    Guenther, Daniel
    Bertoldi, Giacomo
    Marke, Thomas
    Strasser, Ulrich
    Bruzzone, Lorenzo
    Zebisch, Marc
    Notarnicola, Claudia
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1886 - 1889
  • [10] Estimating snow depth based on dual polarimetric radar index from Sentinel-1 GRD data: A case study in the Scandinavian Mountains
    Feng, Tianwen
    Huang, Chunlin
    Huang, Guanghui
    Shao, Donghang
    Hao, Xiaohua
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 130