REPRESENTATIONS OF C∗-CORRESPONDENCES ON PAIRS OF HILBERT SPACES

被引:0
|
作者
Delfin, Alonso [1 ,2 ]
机构
[1] Univ Oforegon, Dept Math, Eugene, OR 97403 USA
[2] Univ Colorado, Dept Math, Boulder, CO 80309 USA
关键词
C-& lowast; -correspondences; Hilbert bimodules; representations; adjointable maps; interior tensor product; ALGEBRAS;
D O I
10.7900/jot.2022sep02.2431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study representations of Hilbert bimodules on pairs of Hilbert spaces. If A is a C-& lowast;-algebra and X is a right Hilbert A-module, we use such representations to faithfully represent the C-& lowast;-algebras K-A(X) and L-A( X ) . We then extend this theory to define representations of ( A , B) ) C-& lowast;-correspondences on a pair of Hilbert spaces and show how these can be obtained from any nondegenerate representation of B . As an application of such representations, we give necessary and sufficient conditions on an ( A , B) ) C-& lowast;-correspondences to admit a Hilbert A- B-bimodule structure. Finally, we show how to represent the interior tensor product of two C-& lowast;-correspondences.
引用
收藏
页码:167 / 188
页数:22
相关论文
共 50 条
  • [1] LAGRANGIAN PAIRS IN HILBERT SPACES
    Sandovici, Adrian
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2006, 12 (01): : 82 - 100
  • [2] κ-Minkowski representations on Hilbert spaces
    Agostini, Alessandra
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
  • [3] Essential representations of C*-correspondences
    Hirshberg, I
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2005, 16 (07) : 765 - 775
  • [4] Fibonacci representations of sequences in hilbert spaces
    Moghaddam, J. Sedghi
    Najati, Abbas
    Khedmati, Y.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (01): : 99 - 112
  • [5] FIBONACCI REPRESENTATIONS OF SEQUENCES IN HILBERT SPACES
    Moghaddam, J. Sedghi
    Najati, Abbas
    Khedmati, Y.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (01): : 99 - 112
  • [6] Inequalities for operators and operator pairs in Hilbert spaces
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    Minculete, Nicusor
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [7] Orthoscalar representations of quivers in the category of Hilbert spaces
    Kruglyak S.A.
    Nazarova L.A.
    Roiter A.V.
    Journal of Mathematical Sciences, 2007, 145 (1) : 4793 - 4804
  • [8] Ordinary differential operators in Hilbert spaces and Fredholm pairs
    Alberto Abbondandolo
    Pietro Majer
    Mathematische Zeitschrift, 2003, 243 : 525 - 562
  • [9] ON SUBCORRECT AND CORRECT PAIRS OF OPERATORS IN HILBERT-SPACES
    SENDEROV, VA
    HATSKEVICH, VA
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (06) : 856 - 863