Development of a Convolutional Neural Network Architecture for Production Based Photovoltaic Fault Detection

被引:0
|
作者
Hussain, Muhammad [1 ]
Chen, Tianhua [1 ]
Sofya, Titarenko [1 ]
Hill, Richard [1 ]
Al-Aqrabi, Hussain [1 ]
机构
[1] Univ Huddersfield, Sch Comp & Engn, Dept Comp Sci, Huddersfield, England
关键词
Photovoltaic; Deep learning; Convolutional Networks; Batch Normalisation; Data Augmentation; ELECTROLUMINESCENCE;
D O I
10.1007/978-3-031-55568-8_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a framework for the detection of cracked Photovoltaic (PV) cells within the production environment through the creation of a Convolutional Neural Network (CNN). The paper demonstrates how a simple CNN using certain data augmentation techniques and specific regularization i.e., batch normalisation is efficient for PV based crack detection, achieving a recall rate of 99.2% and F1-score of 97.4%. We validate each methodological iteration via KFold cross validation providing granular metrical details allowing us to further optimize the model recall metric to suit the needs of our end deployment environment. We understand and appreciate the lack of highly quality PV image data of defect and therefore through our research we propose specific data augmentations for scaling and injecting variance into PV datasets. The augmentations do not provide any artificial propping of the model performance but are rather cases that may be found on the production line for PV cell manufacturing.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [1] Photovoltaic Module Fault Detection Based on a Convolutional Neural Network
    Lu, Shiue-Der
    Wang, Meng-Hui
    Wei, Shao-En
    Liu, Hwa-Dong
    Wu, Chia-Chun
    [J]. PROCESSES, 2021, 9 (09)
  • [2] Convolutional Neural Network Based Fault Detection for Rotating Machinery
    Janssens, Olivier
    Slavkovikj, Viktor
    Vervisch, Bram
    Stockman, Kurt
    Loccufier, Mia
    Verstockt, Steven
    Van de Walle, Rik
    Van Hoecke, Sofie
    [J]. JOURNAL OF SOUND AND VIBRATION, 2016, 377 : 331 - 345
  • [3] Seismic fault detection with convolutional neural network
    Xiong, Wei
    Ji, Xu
    Ma, Yue
    Wang, Yuxiang
    AlBinHassan, Nasher M.
    Ali, Mustafa N.
    Luo, Yi
    [J]. GEOPHYSICS, 2018, 83 (05) : O97 - O103
  • [4] A DC Series Arc Fault Detection Method Based on a Lightweight Convolutional Neural Network Used in Photovoltaic System
    Wang, Yao
    Bai, Cuiyan
    Qian, Xiaopeng
    Liu, Wanting
    Zhu, Chen
    Ge, Leijiao
    [J]. ENERGIES, 2022, 15 (08)
  • [5] Fault detection and diagnosis for reactive distillation based on convolutional neural network
    Ge, Xiaolong
    Wang, Beibei
    Yang, Xinchuang
    Pan, Yu
    Liu, Botan
    Liu, Botong
    [J]. Computers and Chemical Engineering, 2021, 145
  • [6] Fault detection and diagnosis for reactive distillation based on convolutional neural network
    Ge, Xiaolong
    Wang, Beibei
    Yang, Xinchuang
    Pan, Yu
    Liu, Botan
    Liu, Botong
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2021, 145
  • [7] Fault Detection of Planetary Gearboxes Based on Deep Convolutional Neural Network
    Cheng, Zhe
    Hu, Niaoqing
    Chen, Jiageng
    Gao, Ming
    Zhu, Qifeng
    [J]. 2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [8] Fault Detection and Location of Transmission Lines Based on Convolutional Neural Network
    Jiang, Yangyang
    Sun, Chang
    Xia, Yongxiang
    Tu, Haicheng
    Liu, Chunshan
    [J]. 2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [9] A Novel Convolutional Neural Network-Based Approach for Fault Classification in Photovoltaic Arrays
    Aziz, Farkhanda
    Ul Haq, Azhar
    Ahmad, Shahzor
    Mahmoud, Yousef
    Jalal, Marium
    Ali, Usman
    [J]. IEEE ACCESS, 2020, 8 : 41889 - 41904
  • [10] Convolutional Neural Network based Automatic Detection of Visible Faults in a Photovoltaic Module
    Sridharan, Naveen Venkatesh
    Sugumaran, V
    [J]. ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021,