Neutron scattering signature of the Dzyaloshinskii-Moriya interaction in nanoparticles

被引:0
|
作者
Sinaga, Evelyn Pratami [1 ]
Adams, Michael P. [1 ]
Hasdeo, Eddwi H. [1 ,2 ]
Michels, Andreas [1 ]
机构
[1] Univ Luxembourg, Dept Phys & Mat Sci, 162A Ave Faiencerie, L-1511 Luxembourg, Luxembourg
[2] Natl Res & Innovat Agcy, Res Ctr Quantum Phys, South Tangerang 15314, Indonesia
关键词
D O I
10.1103/PhysRevB.110.054404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The antisymmetric Dzyaloshinkii-Moriya interaction (DMI) arises in systems with broken inversion symmetry and strong spin-orbit coupling. In conjunction with the isotropic and symmetric exchange interaction, magnetic anisotropy, the dipolar interaction, and an externally applied magnetic field, the DMI supports and stabilizes the formation of various kinds of complex mesoscale magnetization configurations, such as helices, spin spirals, skyrmions, or hopfions. A question of importance in this context addresses the neutron scattering signature of the DMI, in particular in nanoparticle assemblies, where the related magnetic scattering signal is diffuse in character and not of the single-crystal diffraction-peak type, as it is, e.g., seen in the B20 compounds. Using micromagnetic simulations we study the effect of the DMI in spherical FeGe nanoparticles on the randomly averaged magnetic neutron scattering observables, more specifically on the spin-flip small-angle neutron scattering cross section, the related chiral function, and the pair-distance distribution function. Within the studied parameter space for the particle size (60 nm L 200 nm) and the applied magnetic field (-1 T mu 0H0 1 T), we find that the chiral function is only nonzero when the DMI is taken into account in the simulations. This result is discussed within the context of the symmetry properties of the magnetization Fourier components and of the involved energies under space inversion. Finally, for small applied magnetic fields, we provide an easy-to-implement phenomenological correlation function for the DMI-induced spin modulations (with wave vector kd). The corresponding randomly averaged spin-flip small-angle neutron scattering cross section reproduces the main features found in the numerical simulations.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [1] Dzyaloshinskii-Moriya interaction in the paramagnetic state and the polarized neutron scattering
    Aristov, DN
    Maleyev, SV
    PHYSICA B, 2001, 297 (1-4): : 78 - 81
  • [2] Spin chirality induced by the Dzyaloshinskii-Moriya interaction and polarized neutron scattering
    Aristov, DN
    Maleyev, SV
    PHYSICAL REVIEW B, 2000, 62 (02): : R751 - R754
  • [3] Dzyaloshinskii-Moriya interaction in heterostructures
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2019, 62 (08) : 844 - 844
  • [4] Consequences of the Dzyaloshinskii-Moriya interaction
    Camley, Robert E.
    Livesey, Karen L.
    SURFACE SCIENCE REPORTS, 2023, 78 (03)
  • [5] DZYALOSHINSKII-MORIYA INTERACTION IN THE CUPRATES
    COFFEY, D
    RICE, TM
    ZHANG, FC
    PHYSICAL REVIEW B, 1991, 44 (18): : 10112 - 10116
  • [6] The Dzyaloshinskii-Moriya interaction in metals
    Hu, C. D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (08)
  • [7] Measuring the sense of the Dzyaloshinskii-Moriya interaction
    Dmitrienko, V.
    Ovchinnikova, E.
    Collins, S.
    Nisbet, G.
    Beutier, G.
    Kvashnin, Y.
    Mazurenko, V.
    Lichtenstein, A.
    Katsnelson, M.
    Rogalev, A.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C1350 - C1350
  • [8] Cubic magnets with Dzyaloshinskii-Moriya interaction
    Maleyev, S. V.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 1602 - 1603
  • [9] Hysteresis of nanocylinders with Dzyaloshinskii-Moriya interaction
    Carey, Rebecca
    Beg, Marijan
    Albert, Maximilian
    Bisotti, Marc-Antonio
    Cortes-Ortuno, David
    Vousden, Mark
    Wang, Weiwei
    Hovorka, Ondrej
    Fangohr, Hans
    APPLIED PHYSICS LETTERS, 2016, 109 (12)
  • [10] Making the Dzyaloshinskii-Moriya interaction visible
    Hrabec, A.
    Belmeguenai, M.
    Stashkevich, A.
    Cherif, S. M.
    Rohart, S.
    Roussigne, Y.
    Thiaville, A.
    APPLIED PHYSICS LETTERS, 2017, 110 (24)