A Riemann-Hilbert Approach to Skew-Orthogonal Polynomials of Symplectic Type

被引:0
|
作者
Little, Alex [1 ]
机构
[1] ENS Lyon, Unite Math Pures & Appl, Lyon, France
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Riemann-Hilbert problem; skew-orthogonal polynomials; random matrices; DOUBLE SCALING LIMIT; UNIVERSALITY; ASYMPTOTICS; ENSEMBLES; UNITARY; RESPECT;
D O I
10.3842/SIGMA.2024.076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a representation of skew-orthogonal polynomials of symplectic type (beta = 4) in terms of a matrix Riemann-Hilbert problem, for weights of the form e-V (z) where V is a polynomial of even degree and positive leading coefficient. This is done by representing skew-orthogonality as a kind of multiple-orthogonality. From this, we derive a beta = 4 analogue of the Christoffel-Darboux formula. Finally, our Riemann-Hilbert representation allows us to derive a Lax pair whose compatibility condition may be viewed as a beta = 4 analogue of the Toda lattice.
引用
收藏
页数:32
相关论文
共 50 条