Augmentation Samplers for Multinomial Probit Bayesian Additive Regression Trees

被引:0
|
作者
Xu, Yizhen [1 ]
Hogan, Joseph [2 ]
Daniels, Michael [3 ]
Kantor, Rami [4 ]
Mwangi, Ann [5 ]
机构
[1] Univ Utah, Div Biostat, Salt Lake City, UT USA
[2] Brown Univ, Dept Biostat, Providence, RI USA
[3] Univ Florida, Dept Stat, Gainesville, FL USA
[4] Brown Univ, Div Infect Dis, Providence, RI USA
[5] Moi Univ, Coll Hlth Sci, Sch Med, Eldoret, Kenya
基金
美国国家卫生研究院;
关键词
Categorical outcomes; Data augmentation; Latent models; GIBBS SAMPLER; MARKOV-CHAIN; MODEL; STRATEGIES; LIKELIHOOD;
D O I
10.1080/10618600.2024.2388605
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The multinomial probit (MNP) framework is based on a multivariate Gaussian latent structure, allowing for natural extensions to multilevel modeling. Unlike multinomial logistic models, MNP does not assume independent alternatives. Kindo, Wang, and Pe & ntilde;a proposed multinomial probit BART (MPBART) to accommodate Bayesian additive regression trees (BART) formulation in MNP. The posterior sampling algorithms for MNP and MPBART are collapsed Gibbs samplers. Because the collapsing augmentation strategy yields a geometric rate of convergence no greater than that of a standard Gibbs sampling step, it is recommended whenever computationally feasible (Liu; Imai and van Dyk). While this strategy necessitates simple sampling steps and a reasonably fast converging Markov chain, the complexity of the stochastic search for posterior trees may undermine its benefit. We address this problem by sampling posterior trees conditional on the constrained parameter space and compare our proposals to that of Kindo, Wang, and Pe & ntilde;a, who sample posterior trees based on an augmented parameter space. In terms of MCMC convergence and posterior predictive accuracy, our proposals outperform the augmented tree sampling approach. We also show that the theoretical mixing rates of our proposals are guaranteed to be no greater than the augmented tree sampling approach. Appendices and codes for simulations and demonstrations are available online.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multinomial probit Bayesian additive regression trees
    Kindo, Bereket P.
    Wang, Hao
    Pena, Edsel A.
    [J]. STAT, 2016, 5 (01): : 119 - 131
  • [2] Ordered probit Bayesian additive regression trees for ordinal data
    Lee, Jaeyong
    Hwang, Beom Seuk
    [J]. STAT, 2024, 13 (01):
  • [3] Log-Linear Bayesian Additive Regression Trees for Multinomial Logistic and Count Regression Models
    Murray, Jared S.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (534) : 756 - 769
  • [4] Variational Bayesian multinomial probit regression with gaussian process priors
    Girolami, Mark
    Rogers, Simon
    [J]. NEURAL COMPUTATION, 2006, 18 (08) : 1790 - 1817
  • [5] A Bayesian analysis of the multinomial probit model using marginal data augmentation
    Imai, K
    van Dyk, DA
    [J]. JOURNAL OF ECONOMETRICS, 2005, 124 (02) : 311 - 334
  • [6] Convergence properties of Gibbs samplers for Bayesian probit regression with proper priors
    Chakraborty, Saptarshi
    Khare, Kshitij
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 177 - 210
  • [7] Bayesian additive regression trees with model trees
    Prado, Estevao B.
    Moral, Rafael A.
    Parnell, Andrew C.
    [J]. STATISTICS AND COMPUTING, 2021, 31 (03)
  • [8] Bayesian additive regression trees with model trees
    Estevão B. Prado
    Rafael A. Moral
    Andrew C. Parnell
    [J]. Statistics and Computing, 2021, 31
  • [9] Gene prediction using multinomial probit regression with Bayesian gene selection
    Zhou, XB
    Wang, XD
    Dougherty, ER
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (01) : 115 - 124
  • [10] Gene Prediction Using Multinomial Probit Regression with Bayesian Gene Selection
    Xiaobo Zhou
    Xiaodong Wang
    Edward R. Dougherty
    [J]. EURASIP Journal on Advances in Signal Processing, 2004