SEMI-SUPERVISED AUTOMATIC LAYER AND FLUID REGION SEGMENTATION OF RETINAL OPTICAL COHERENCE TOMOGRAPHY IMAGES USING ADVERSARIAL LEARNING

被引:0
|
作者
Liu, Xiaoming [1 ,2 ]
Fu, Tianyu [1 ,2 ]
Pan, Zhifang [3 ]
Liu, Dong [1 ,2 ]
Hu, Wei [1 ,2 ]
Li, Bo [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan 430065, Hubei, Peoples R China
[2] Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan 430065, Hubei, Peoples R China
[3] Wenzhou Med Univ, Informat Technol Ctr, Wenzhou 325035, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
OCT; image processing; convolutional neural networks; adversarial learning; layer segmentation; THICKNESS;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Optical coherence tomography (OCT) is a primary imaging technique for ophthalmic diagnosis, which has the advantages of high-resolution and non-invasive. Diabetes is a chronic disease which might increase the risk of blindness. Hence, it is important to monitor the morphology of the retinal layer and fluid accumulation for Diabetic macular edema (DME) patients. In this paper, we proposed a new semi-supervised fully convolutional deep learning approach for segmenting retinal layers and fluid region in retinal OCT B-scans. The proposed semi-supervised approach leverages unlabeled data through an adversarial learning strategy. The segmentation framework includes a segment network and a discriminate network, both two networks are u-net like fully convolutional architecture. The objective function of the segment network is a joint loss function including multi-class cross entropy loss, adversarial loss and semi-supervise loss. Experiment result on the duke DME dataset demonstrate the effectiveness of the proposed segmentation framework.
引用
收藏
页码:2780 / 2784
页数:5
相关论文
共 50 条
  • [1] Semi-Supervised Automatic Segmentation of Layer and Fluid Region in Retinal Optical Coherence Tomography Images Using Adversarial Learning
    Liu, Xiaoming
    Cao, Jun
    Fu, Tianyu
    Pan, Zhifang
    Hu, Wei
    Zhang, Kai
    Liu, Jun
    [J]. IEEE ACCESS, 2019, 7 : 3046 - 3061
  • [2] Boundary-enhanced semi-supervised retinal layer segmentation in optical coherence tomography images using fewer labels
    Lu, Ye
    Shen, Yutian
    Xing, Xiaohan
    Ye, Chengwei
    Meng, Max Q. -H.
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 105
  • [3] Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning
    Liu, Xiaoming
    Wang, Shaocheng
    Zhang, Ying
    Liu, Dong
    Hu, Wei
    [J]. NEUROCOMPUTING, 2021, 452 : 576 - 591
  • [4] Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning
    Shaleen Bengani
    Angel Arul Jothi J.
    Vadivel S.
    [J]. Multimedia Tools and Applications, 2021, 80 : 3443 - 3468
  • [5] Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning
    Bengani, Shaleen
    Jothi, Angel Arul J.
    Vadivel, S.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (03) : 3443 - 3468
  • [6] Semi-supervised contrast learning-based segmentation of choroidal vessel in optical coherence tomography images
    Liu, Xiaoming
    Pan, Jingling
    Zhang, Ying
    Li, Xiao
    Tang, Jinshan
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (24):
  • [7] Retinal layer and fluid segmentation in optical coherence tomography images using a hierarchical framework
    Melo, Tania
    Carneiro, Angela
    Campilho, Aurelio
    Mendonca, Ana Maria
    [J]. JOURNAL OF MEDICAL IMAGING, 2023, 10 (01)
  • [8] Uncertainty-guided self-ensembling model for semi-supervised segmentation of multiclass retinal fluid in optical coherence tomography images
    Liu, Xiaoming
    Wang, Shaocheng
    Cao, Jun
    Zhang, Ying
    Wang, Man
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (01) : 369 - 386
  • [9] Automatic detection of retinopathy with optical coherence tomography images via a semi-supervised deep learning method
    Luo, Yuemei
    Xu, Qing
    Jin, Ruibing
    Wu, Min
    Liu, Linbo
    [J]. BIOMEDICAL OPTICS EXPRESS, 2021, 12 (05) : 2684 - 2702
  • [10] Automatic retinal layer segmentation of visible-light optical coherence tomography images using deep learning
    Gopal, Bryan Dev
    Zhang, Tingwei
    Norcia, Anthony
    Goldberg, Jeffrey L.
    Dubra, Alfredo
    Zhang, Hao
    Soetikno, Brian
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)