Intrinsic Action Tendency Consistency for Cooperative Multi-Agent Reinforcement Learning

被引:0
|
作者
Zhang, Junkai [1 ,2 ]
Zhang, Yifan [1 ,3 ,4 ]
Zhang, Xi Sheryl [1 ,3 ,4 ]
Zang, Yifan [1 ,2 ]
Cheng, Jian [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Nanjing, Peoples R China
[4] Nanjing Artificial Intelligence Res AI, Nanjing, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Efficient collaboration in the centralized training with decentralized execution (CTDE) paradigm remains a challenge in cooperative multi-agent systems. We identify divergent action tendencies among agents as a significant obstacle to CTDE's training efficiency, requiring a large number of training samples to achieve a unified consensus on agents' policies. This divergence stems from the lack of adequate team consensus-related guidance signals during credit assignments in CTDE. To address this, we propose Intrinsic Action Tendency Consistency, a novel approach for cooperative multi-agent reinforcement learning. It integrates intrinsic rewards, obtained through an action model, into a reward-additive CTDE (RA-CTDE) framework. We formulate an action model that enables surrounding agents to predict the central agent's action tendency. Leveraging these predictions, we compute a cooperative intrinsic reward that encourages agents to match their actions with their neighbors' predictions. We establish the equivalence between RA-CTDE and CTDE through theoretical analyses, demonstrating that CTDE's training process can be achieved using agents' individual targets. Building on this insight, we introduce a novel method to combine intrinsic rewards and CTDE. Extensive experiments on challenging tasks in SMAC and GRF benchmarks showcase the improved performance of our method.
引用
收藏
页码:17600 / 17608
页数:9
相关论文
共 50 条
  • [1] Learning Cooperative Intrinsic Motivation in Multi-Agent Reinforcement Learning
    Hong, Seung-Jin
    Lee, Sang-Kwang
    [J]. 12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 1697 - 1699
  • [2] LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning
    Chen, Zihan
    Luo, Biao
    Hu, Tianmeng
    Xu, Xiaodong
    [J]. NEURAL NETWORKS, 2023, 167 : 450 - 459
  • [3] Action Prediction for Cooperative Exploration in Multi-agent Reinforcement Learning
    Zhang, Yanqiang
    Feng, Dawei
    Ding, Bo
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2023, PT II, 2024, 14448 : 358 - 372
  • [4] Intrinsic Reward with Peer Incentives for Cooperative Multi-Agent Reinforcement Learning
    Zhang, Tianle
    Liu, Zhen
    Wu, Shiguang
    Pu, Zhiqiang
    Yi, Jianqiang
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [5] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] On the Robustness of Cooperative Multi-Agent Reinforcement Learning
    Lin, Jieyu
    Dzeparoska, Kristina
    Zhang, Sai Qian
    Leon-Garcia, Alberto
    Papernot, Nicolas
    [J]. 2020 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2020), 2020, : 62 - 68
  • [7] Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
    Xu, Zhiwei
    Zhang, Bin
    Li, Dapeng
    Zhang, Zeren
    Zhou, Guangchong
    Chen, Hao
    Fan, Guoliang
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11726 - 11734
  • [8] Cooperative Learning of Multi-Agent Systems Via Reinforcement Learning
    Wang, Xin
    Zhao, Chen
    Huang, Tingwen
    Chakrabarti, Prasun
    Kurths, Juergen
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 : 13 - 23
  • [9] Cooperative Multi-Agent Reinforcement Learning With Approximate Model Learning
    Park, Young Joon
    Lee, Young Jae
    Kim, Seoung Bum
    [J]. IEEE ACCESS, 2020, 8 : 125389 - 125400
  • [10] Cooperative Multi-Agent Reinforcement Learning with Hypergraph Convolution
    Bai, Yunpeng
    Gong, Chen
    Zhang, Bin
    Fan, Guoliang
    Hou, Xinwen
    Lu, Yu
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,