Data-driven shear capacity analysis of headed stud in steel-UHPC composite structures

被引:0
|
作者
Zhou, Chang [1 ,2 ]
Wang, Wenwei [1 ]
Zheng, Yuzhou [3 ]
机构
[1] Southeast Univ, Sch Transportat, Nanjing, Peoples R China
[2] City Univ Hong Kong, Dept Architecture & Civil Engn, Hong Kong, Peoples R China
[3] Nanjing Tech Univ, Coll Civil Engn, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Headed stud; Steel-UHPC composite structures; Shear capacity; Machine learning; Model explanation; Software development; RESISTANCE; BEHAVIOR;
D O I
10.1016/j.engstruct.2024.118946
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study employs machine learning (ML) techniques for shear capacity analysis of headed stud in steel-UHPC composite structure. 194 experimental and numerical results of push-out tests are collected and serve as the dataset for ML models training and testing. Six ML algorithms are implemented to train ML models. Comparison analysis is conducted to compare the performance of three empirical formulae and ML models. The results demonstrate that both the Random Forest and eXtreme Gradient Boosting Trees (XGBoost) models exhibit excellent performance, surpassing an R-2 value of 97 % on both training and testing datasets. In contrast, the empirical formulae perform less effectively. Besides, the study incorporates the Shapley additive explanations algorithm to ranking the importance of each feature, and carried out parametric analysis to investigate the correlation between each feature and shear capacity using all samples in the collected dataset. Notably, the most influential variables include diameter and ultimate strength of the headed studs, followed by stud height and thickness of UHPC slab. Cover thickness of UHPC layer and steel fiber volume fractions shows little influence on the shear capacity. Furthermore, based on findings of parametric analysis, design recommendations are provided to avoid shear capacity reduction caused by group effect of studs and UHPC damage. Finally, a user-friendly interactive software is developed and provided to facilitate the shear capacity prediction and design of headed studs in steel-UHPC composite structures.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Push-out tests of demountable headed stud shear connectors in steel-UHPC composite structures
    Wang, Jun-Yan
    Guo, Jun-Yuan
    Jia, Liang-Jiu
    Chen, Shi-Ming
    Dong, Yang
    COMPOSITE STRUCTURES, 2017, 170 : 69 - 79
  • [2] Tensile test of headed stud in steel-UHPC composite slab
    Li, Cong
    Chen, Baochun
    Sennah, Khaled
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 363
  • [3] Research on Shear Capacity of Long Stud Connectors for Steel-UHPC Composite Beams
    Chen Z.
    Ma B.
    Gao L.
    Bridge Construction, 2023, 53 (06) : 79 - 85
  • [4] Shear strength analysis of the stud in steel-UHPC composite bridge deck
    Deng, Ming
    Huo, Ningfei
    Shi, Guangyu
    Zhang, Jianren
    1ST INTERNATIONAL GLOBAL ON RENEWABLE ENERGY AND DEVELOPMENT (IGRED 2017), 2017, 100
  • [5] Study on mechanical properties of stud shear connectors in steel-UHPC composite structures
    Wu, Fang-Wen
    Feng, Yan-Peng
    Dai, Jun
    Wang, Guang-Qian
    Zhang, Jing-Feng
    Gongcheng Lixue/Engineering Mechanics, 2022, 39 (02): : 222 - 234
  • [6] Static behavior of large stud shear connectors in steel-UHPC composite structures
    Wang, Jingquan
    Qi, Jianan
    Tong, Teng
    Xu, Qizhi
    Xiu, Hongliang
    ENGINEERING STRUCTURES, 2019, 178 : 534 - 542
  • [7] Shear behavior and design of headed studs embedded in steel-UHPC composite structures
    Lai, Zhichao
    Weng, Xiangyu
    Yang, Xiaoqiang
    Zhao, Haoran
    STRUCTURES, 2024, 59
  • [8] Finite element analysis on shear behavior of headed studs in steel-UHPC composite slab
    Hu, Wenxu
    Li, Cong
    Chen, Baochun
    Liu, Yongjian
    STRUCTURES, 2023, 52 : 464 - 475
  • [9] Experimental studies of headed stud shear connectors in UHPC Steel composite slabs
    Gao, Xiao-Long
    Wang, Jun-Yan
    Yan, Jia-Bao
    STRUCTURAL ENGINEERING AND MECHANICS, 2020, 74 (05) : 657 - 670
  • [10] Experimental study on grouped stud shear connectors in precast steel-UHPC composite bridge
    Ding, Jingnan
    Zhu, Jinsong
    Kang, Jingfu
    Wang, Xiuce
    ENGINEERING STRUCTURES, 2021, 242