Approximate Finite Fourier Solution to the Periodically Perturbed Two-Body Problem

被引:0
|
作者
Suslov, Kirill [1 ]
Shirobokov, Maksim [1 ]
Trofimov, Sergey [1 ]
机构
[1] Keldysh Inst Appl Math, Space Syst Dynam Dept, Miusskaya Pl 4, Moscow 125047, Russia
关键词
Stationkeeping Maneuvers; Low Thrust Trajectory; Averaging Method; Analytical Expression; Spacecraft; Fourier Transformation; ORBIT DETERMINATION; THRUST; ACCELERATION; MOTION; SET;
D O I
10.2514/1.G007900
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
引用
收藏
页码:1698 / 1708
页数:11
相关论文
共 50 条
  • [1] Dynamics of a stochastically perturbed two-body problem
    Sharma, Shambhu N.
    Parthasarathy, H.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2080): : 979 - 1003
  • [2] A novel analytic continuation power series solution for the perturbed two-body problem
    Kevin Hernandez
    Tarek A. Elgohary
    James D. Turner
    John L. Junkins
    Celestial Mechanics and Dynamical Astronomy, 2019, 131
  • [3] A novel analytic continuation power series solution for the perturbed two-body problem
    Hernandez, Kevin
    Elgohary, Tarek A.
    Turner, James D.
    Junkins, John L.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (10):
  • [4] One integrable case of the perturbed two-body problem
    Poleshchikov, SM
    COSMIC RESEARCH, 2004, 42 (04) : 398 - 407
  • [5] New approach to regularise the perturbed two-body problem
    Alhowaity S.
    Selim H.H.
    Gao F.
    Pathak N.M.
    Abouelmagd E.I.
    Applied Mathematics and Nonlinear Sciences, 2023, 8 (02) : 1245 - 1258
  • [6] One Integrable Case of the Perturbed Two-Body Problem
    S. M. Poleshchikov
    Cosmic Research, 2004, 42 : 398 - 407
  • [7] Kepler's problem of a two-body system perturbed by a third body
    Abdel-Rahman, A. S.
    Sabry, Youssef A.
    Ahmed, E. M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (10):
  • [8] Nontraditional solution to the two-body problem.
    Hellman, M
    Raymond, CC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U578 - U578
  • [9] APPROXIMATE TIME-DEPENDENT SOLUTIONS OF THE TWO-BODY PROBLEM
    Benavides, Julio Cesar
    Spencer, David B.
    SPACEFLIGHT MECHANICS 2010, PTS I-III, 2010, 136 : 1239 - 1256
  • [10] Approximate boost of the relativistic two-body problem in the instantaneous formalism
    Wallace, SJ
    PHYSICAL REVIEW LETTERS, 2001, 87 (18) : 180401 - 1