Enhancing proton exchange membrane water electrolysis performance: Impact of iridium oxide catalyst ink dispersing methodology

被引:1
|
作者
Kuang, Tianchao [1 ,2 ]
Huang, Jian [1 ,2 ]
Li, Jun [1 ,2 ]
Yang, Penglin [1 ,2 ]
Zhang, Liang [1 ,2 ]
Ye, Dingding [1 ,2 ]
Zhu, Xun [1 ,2 ]
Liao, Qiang [1 ,2 ]
机构
[1] Chongqing Univ, Key Lab Low grade Energy Utilizat Technol & Syst, Minist Educ, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Inst Engn Thermophys, Sch Energy & Power Engn, Chongqing 400044, Peoples R China
基金
国家自然科学基金国际合作与交流项目; 中国国家自然科学基金;
关键词
Proton exchange membrane water electrolyzer; Ball milling; Ink stability; Ionomer structure; Catalyst layer structure; FUEL-CELLS; POROUS STRUCTURE; PARTICLE-SIZE; LAYER; NAFION; NANOPARTICLES; DEGRADATION; DURABILITY; PARAMETERS; MECHANISM;
D O I
10.1016/j.jpowsour.2024.234543
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Iridium oxide (IrO2) is the most successful catalyst for triggering oxygen revolution reactions in proton exchange membrane water electrolyzers (PEMWE). However, conventional ultrasonic methods for ink dispersion often result in ink instability, catalyst aggregation, and sedimentation. To address these issues, we investigate the effects of the dispersion type, treatment time, and ionomer-addition sequence on the catalytic performance. Ball-milling procedure prepares a more stable catalyst ink and achieves a larger electrochemical surface area (ECSA) than ultrasonic method. Extending the ball-milling time to 12 h improves the ink stability (absorbance change rate similar to 0.6 % h(-1)); however, over-processing causes the thickest catalyst layer, leading to an enhanced mass transport resistance. Moreover, treating an ionomer with IrO2 causes the substitution of sulfonic acid groups by carboxylic acid groups and reduces the repulsive force in colloidal particles, resulting in poor ink stability, low proton conductivity, and small ECSA. Therefore, adding ionomer after ball milling is recommended for the preparation of a stable ink with high catalytic performance. The membrane electrode assembly prepared using this procedure exhibits an improved performance of 1.70 A cm(-2) at 1.7 V, compared with that prepared using ultrasonic methods. This work provides crucial guidance of ink preparation for large-scale production of PEMWEs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Iridium Surface Oxide Affects the Nafion Interface in Proton-Exchange-Membrane Water Electrolysis
    Berlinger, Sarah A.
    Peng, Xiong
    Luo, Xiaoyan
    Dudenas, Peter J.
    Zeng, Guosong
    Yu, Haoran
    Cullen, David A.
    Weber, Adam Z.
    Danilovic, Nemanja
    Kusoglu, Ahmet
    [J]. ACS ENERGY LETTERS, 2024, : 4792 - 4799
  • [2] Morphological analysis of iridium oxide anode catalyst layers for proton exchange membrane water electrolysis using high-resolution imaging
    Ferner, Kara J.
    Park, Janghoon
    Kang, Zhenye
    Mauger, Scott A.
    Ulsh, Michael
    Bender, Guido
    Litster, Shawn
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 : 176 - 186
  • [3] Enhancing proton exchange membrane water electrolysis by building electron/proton pathways
    Zhu, Liyan
    Zhang, Hao
    Zhang, Aojie
    Tian, Tian
    Shen, Yuhan
    Wu, Mingjuan
    Li, Neng
    Tang, Haolin
    [J]. ADVANCED POWDER MATERIALS, 2024, 3 (04):
  • [4] High performance and cost-effective supported IrOx catalyst for proton exchange membrane water electrolysis
    Min, Xiangping
    Shi, Yan
    Lu, Zhuoxin
    Shen, Lisha
    Ogundipe, Taiwo Oladapo
    Gupta, Pralhad
    Wang, Chi
    Guo, Changqing
    Wang, Zhida
    Tan, Hongyi
    Mukerjee, Sanjeevc
    Yan, Changfeng
    [J]. ELECTROCHIMICA ACTA, 2021, 385
  • [5] Toward a stable and active catalyst for proton-exchange membrane water electrolysis
    Wang, Siwen
    Liu, Liping
    Xin, Hongliang
    Ling, Chen
    [J]. CHEM CATALYSIS, 2024, 4 (01):
  • [6] Impact of Catalyst Reconstruction on the Durability of Anion Exchange Membrane Water Electrolysis
    Lei, Chong
    Yang, Kaicong
    Wang, Guangzhe
    Wang, Gongwei
    Lu, Juntao
    Xiao, Li
    Zhuang, Lin
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (50) : 16725 - 16733
  • [7] Evaluating the performance of hybrid proton exchange membrane for PEM water electrolysis
    Abdel-Motagali, Ali
    Al Bacha, Serge
    Rouby, Waleed M. A. El
    Bigarre, Janick
    Millet, Pierre
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 87 - 102
  • [8] Water Crossover in Proton Exchange Membrane Water Electrolysis
    Friedrichs-Schucht, M.
    Hasche, F.
    Oezaslan, M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (07)
  • [9] High Performance and Durable Anode with 10-Fold Reduction of Iridium Loading for Proton Exchange Membrane Water Electrolysis
    Torrero, Jorge
    Morawietz, Tobias
    Sanchez, Daniel Garcia
    Galyamin, Dmitry
    Retuerto, Maria
    Martin-Diaconescu, Vlad
    Rojas, Sergio
    Alonso, Jose Antonio
    Gago, Aldo Saul
    Friedrich, Kaspar Andreas
    [J]. ADVANCED ENERGY MATERIALS, 2023, 13 (23)
  • [10] Effect of Catalyst Ink Properties on the Performance of Proton Exchange Membrane Fuel Cell and Water Electrolyzer: A Mini Review
    Choi, Won-Jong
    Kang, Inku
    Yu, Duk Man
    Yoon, Sang Jun
    So, Soonyong
    Oh, Keun-Hwan
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024,