Physics-Informed Machine Learning Using Low-Fidelity Flowfields for Inverse Airfoil Shape Design

被引:0
|
作者
Wong, Benjamin Y. J. [1 ]
Damodaran, Murali [2 ]
Khoo, Boo Cheong [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 117411, Singapore
[2] Natl Univ Singapore, Singapore 117411, Singapore
关键词
Machine Learning; Airfoil Databases; Artificial Neural Network; Aerodynamic Analysis; Reynolds Averaged Navier Stokes; Computational Fluid Dynamics; Aircraft Design; Applied Mathematics; Computational Physics; Wing-Shape Optimization; NEURAL-NETWORKS; AERODYNAMIC DESIGN; TRANSITION; MODELS; FLOW;
D O I
10.2514/1.J063570
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Physics-informed neural networks (PINNs) are a class of scientific machine learning that utilizes differential equations in loss formulations to model physical quantities. Despite recent developments, complex phenomena such as high-Reynolds-number (high-Re) flow remain a modeling challenge without the use of high-fidelity inputs. In this study, a low-fidelity-influenced physics-informed neural network (LF-PINN) is proposed as a surrogate aerodynamic analysis model for inverse airfoil shape design at Re=1.0x106. The LF-PINN is developed in a hybrid approach using low-fidelity flowfields approximated from a viscous-inviscid coupled airfoil analysis tool (mfoil) and physics residuals from the steady, incompressible, two-dimensional Navier-Stokes (NS) equations. The approach is designed to alleviate offline computational costs by avoiding high-fidelity simulations and sustain predicting accuracy using corrections by the physics residuals. The LF-PINN is able to correct the low-fidelity flowfield quantities toward the ground truth, with a mean improvement of about 19% in pressure and about 5% in total velocity based on Euclidean distance comparisons. Evaluation of the airfoil surface pressure coefficient Cp distributions shows corrections by the LF-PINN at the suction peak, which largely contributes to lifting forces. Inverse airfoil shape design is conducted using target Cp distributions in the objective function, whereby the LF-PINN can approach the expected target shapes while reducing online computational time by at least an order of magnitude compared to direct airfoil analysis tools.
引用
收藏
页码:2846 / 2861
页数:16
相关论文
共 50 条
  • [1] Physics-Informed Machine Learning for Inverse Design of Optical Metamaterials
    Sarkar, Sulagna
    Ji, Anqi
    Jermain, Zachary
    Lipton, Robert
    Brongersma, Mark
    Dayal, Kaushik
    Noh, Hae Young
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (12):
  • [2] Physics-informed machine learning for the inverse design of wave scattering clusters
    Tempelman, Joshua R.
    Weidemann, Tobias
    Flynn, Eric B.
    Matlack, Kathryn H.
    Vakakis, Alexander F.
    WAVE MOTION, 2024, 130
  • [3] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [4] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [5] Multi-fidelity physics-informed machine learning for probabilistic damage diagnosis
    Miele, S.
    Karve, P.
    Mahadevan, S.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 235
  • [6] Physics-informed machine learning for composition - process - property design: Shape memory alloy demonstration
    Liu, Sen
    Kappes, Branden B.
    Amin-ahmadi, Behnam
    Benafan, Othmane
    Zhang, Xiaoli
    Stebner, Aaron P.
    APPLIED MATERIALS TODAY, 2021, 22
  • [7] Physics-Informed Inverse Design of Programmable Metasurfaces
    Xu, Yucheng
    Yang, Jia-Qi
    Fan, Kebin
    Wang, Sheng
    Wu, Jingbo
    Zhang, Caihong
    Zhan, De-Chuan
    Padilla, Willie J.
    Jin, Biaobing
    Chen, Jian
    Wu, Peiheng
    ADVANCED SCIENCE, 2024,
  • [8] Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks
    Aliakbari, Maryam
    Mahmoudi, Mostafa
    Vadasz, Peter
    Arzani, Amirhossein
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2022, 96
  • [9] Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning
    Mandl, Luis
    Goswami, Somdatta
    Lambers, Lena
    Ricken, Tim
    Computer Methods in Applied Mechanics and Engineering, 2025, 434
  • [10] Structural Shape Optimization Design Based on Physics-Informed Deep Learning
    Tang, Hesheng
    Li, Du
    Liao, Yangyang
    Li, Rongshuai
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2024, 51 (11): : 33 - 42