In Situ Synthesis of Self-Floating Janus Fe3O4@IF Evaporator for Solar-Driven Interfacial Evaporation

被引:1
|
作者
Kong, Lingxue [1 ]
Jia, Ye [1 ]
Zeng, Ke [1 ]
Wang, Yuping [1 ]
Zhang, Tengdi [1 ]
Liu, Anmin [1 ]
Gao, Liguo [1 ]
Ma, Tingli [2 ,3 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn Ocean & Life Sci, State Key Lab Fine Chem, Dalian 116023, Peoples R China
[2] China Jiliang Univ, Coll Mat & Chem, Hangzhou 310018, Peoples R China
[3] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, Kitakyushu, Fukuoka 8080196, Japan
基金
中国国家自然科学基金;
关键词
iron foam; Janus structure; seawater desalination; solar-driven interfacial evaporation; STEAM; ELECTRICITY; WATER;
D O I
10.1002/ente.202400746
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar-driven interfacial evaporation is one of the most promising technologies to address global freshwater shortages. Compared with the integrated structure, monolithic system with asymmetric wettability can be used alone to reduce the structural complexity without sacrificing the localized management of heat. Herein, a monolithic structure of Janus Fe3O4@IF evaporator with asymmetric wettability has been fabricated via a simple in situ hydrothermal method. The low-cost Janus Fe3O4@IF evaporator can be self-floating with a sizable surface area, high porosity, and low density, which presents excellent light absorption features of 98.1% within a broadband wavelength range of 200-2500 nm. Due to the strong capillarity action and Janus wettability, the evaporation is efficient (1.64 kg m(-2) h(-1)) and stable even treating with highly concentrated brine of 20 wt%. This work demonstrates an effective strategy for achieving high-performance solar-driven interfacial evaporation and superior salt rejection capability, which can be potentially utilized in seawater desalination.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A self-floating carbon fiber-based evaporator with a novel sandwich-Janus structure for highly efficient solar-driven interfacial evaporation
    Wu, Haoyue
    Wang, Xin
    Liu, Mengzhu
    Wang, Yongpeng
    Feng, Shuyue
    Wu, Tinghui
    DESALINATION, 2025, 597
  • [2] Integrating a Self-Floating Janus TPC@CB Sponge for Efficient Solar-Driven Interfacial Water Evaporation
    Li, Shuying
    Qiu, Feng
    Xia, Yuguo
    Chen, Dairong
    Jiao, Xiuling
    ACS Applied Materials and Interfaces, 2022, 14 (17): : 19409 - 19418
  • [3] Integrating a Self-Floating Janus TPC@CB Sponge for Efficient Solar-Driven Interfacial Water Evaporation
    Li, Shuying
    Qiu, Feng
    Xia, Yuguo
    Chen, Dairong
    Jiao, Xiuling
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (17) : 19409 - 19418
  • [4] A self-floating Janus PPy@Ni sponge salt-resisting solar evaporator for efficient interfacial evaporation
    Song, Ru
    Zhang, Ningshuang
    Wang, Peng
    Ding, Hao
    Wang, Jie
    Li, Shiyou
    APPLIED SURFACE SCIENCE, 2023, 616
  • [5] Self-floating Porous PVDF-CNT Microbeads for Highly Efficient Solar-driven Interfacial Water Evaporation
    Liang Pingping
    Liu Shuai
    Li Hongyi
    Ding Yadan
    Wen Xiaokun
    Liu Junping
    Hong Xia
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2021, 42 (08): : 2689 - 2693
  • [6] Bacterial cellulose-based film with self-floating hierarchical porous structure for efficient solar-driven interfacial evaporation
    Jin, Mengtian
    Qu, Xiangyang
    Li, Jing
    Deng, Lili
    Han, Zhiliang
    Chen, Shiyan
    Wang, Huaping
    CARBOHYDRATE POLYMERS, 2023, 321
  • [7] Self-Floating Carbon Nanotube Membrane on Macroporous Silica Substrate for Highly Efficient Solar-Driven Interfacial Water Evaporation
    Wang, Yuchao
    Zhang, Lianbin
    Wang, Peng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (03): : 1223 - 1230
  • [8] Self-floating maize straw/graphene aerogel synthesis based on microbubble and ice crystal templates for efficient solar-driven interfacial water evaporation
    Kong, Yan
    Dan, Hongbing
    Kong, Wenjia
    Gao, Yue
    Shang, Yanan
    Ji, Kaidi
    Yue, Qinyan
    Gao, Baoyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (46) : 24734 - 24742
  • [9] Self-Floating Polydopamine/Polystyrene Composite Porous Structure via a NaCl Template Method for Solar-Driven Interfacial Water Evaporation
    Wang, Xiao
    Li, Zhen
    Wu, Xiaojing
    Liu, Bingjie
    Tian, Tian
    Ding, Yi
    Zhang, Haibo
    Li, Yuanli
    Liu, Ye
    Dai, Chunai
    POLYMERS, 2024, 16 (15)
  • [10] 3D hydrogel-based salt resistant self-floating solar-driven interfacial evaporator with efficient water-lifting capacity for desalination
    Guo, Chenglong
    Ma, Chengcheng
    Zhang, Tongxing
    Tian, Yukun
    Liu, Ke
    Mirzaei, Mohsen
    Wang, Yejun
    Cao, Hongxia
    APPLIED THERMAL ENGINEERING, 2025, 261