Succinic acid is a valuable platform chemical that can be produced from renewable resources, such as lignocellulosic biomass (LCB). The utilization of LCB to produce succinic acid involves a pretreatment step that results in a hemicellulosic hydrolysate. This hydrolysate is enriched with sugars, but it also contains inhibitory compounds at levels that could impede the growth of microorganisms due to their toxicity and can hamper fermentation process. Hydrolysate detoxification is a critical step in the production of succinic acid from lignocellulosic biomass, aiming to remove inhibitory compounds that hinder fermentation efficiency. This review evaluates hydrolysate production from lignocellulosic biomass towards succinic acid production. A comprehensive discussion was done on detoxification methods, including adsorption techniques, evaporation, overliming, neutralization, membrane filtration, solvent extraction, enzymatic, microbial, and combined detoxification approaches. Each method's principles, effectiveness, advantages, and limitations are discussed. Furthermore, future perspectives in hydrolysate detoxification for succinic acid production are outlined, focusing on tailored detoxification protocols, novel detoxification agents and technologies, biotechnological approaches, process optimization and scaleup, technoeconomic and environmental analysis, and mathematical and computational modeling. Overall, this review highlights the importance of continued research and development in hydrolysate detoxification to advance sustainable succinic acid production from lignocellulosic biomass.