Application of machine learning in predicting the thermal conductivity of single-filler polymer composites

被引:1
|
作者
Liu, Yinzhou [1 ,2 ]
Zheng, Weidong [2 ]
Ai, Haoqiang [2 ]
Zhou, Hao [2 ]
Feng, Liyin [2 ]
Cheng, Lin [2 ]
Guo, Ruiqiang [2 ]
Song, Xiaohan [2 ]
机构
[1] Shandong Univ, Inst Adv Technol, Jinan 250061, Peoples R China
[2] Shandong Inst Adv Technol, Jinan 250100, Peoples R China
来源
关键词
Machine learning; Thermal conductivity; Polymer composites; MECHANICAL-PROPERTIES; ALUMINUM NITRIDE; EPOXY COMPOSITES; INTERFACE MATERIALS; SURFACE-TREATMENT; HEAT-CONDUCTION; BORON-NITRIDE; BOLTZMANN; TRANSPORT; GRAPHENE;
D O I
10.1016/j.mtcomm.2024.109116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polymer composites with superior thermal conductivity and low electrical conductivity are pivotal in the cooling of electronic devices. Despite their prevalence, the accurate prediction of the thermal conductivity of these composites remains a challenge. The emergence of machine learning (ML) provides a groundbreaking approach to solving this issue. In this study, we constructed a comprehensive dataset collected from previous experimental papers and successfully predicted the thermal conductivity of single -filler polymer composites using four ML regression algorithms: random forest regression (RFR), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and Gaussian process regression (GPR). By employing feature engineering to select pertinent features from the original datasets, the accuracy of the four models on the test set was improved, among which GBDT exhibited the highest accuracy with the Pearson correlation coefficient value of 0.981. Factors such as filler volume fraction and matrix thermal conductivity significantly influence the thermal conductivity of composite materials, while the thermal conductivity of the fillers has a relatively minor impact. Additionally, we identified the topological polar surface area (TPSA) as a crucial descriptor for surface modifications, quantifying diverse surface-modifying agents. Due to the incorporation of more descriptors, ML models exhibit higher precision and broader applicability compared to empirical formulas. Our study provides an effective tool for predicting the thermal conductivity of polymer composites with single fillers and underscores the potential of machine learning in accelerating materials design.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Thermal conductivity of polymer composites with a dispersed filler
    Furgel', I.A.
    Molin, O.V.
    Borshch, V.E.
    Sigal, E.M.
    Tyrtsakova, M.A.
    [J]. Inzhenerno-Fizicheskii Zhurnal, 1992, 62 (03): : 453 - 459
  • [2] Predicting, measuring, and tailoring the transverse thermal conductivity of composites from polymer matrix and metal filler
    Danes, F
    Garnier, B
    Dupuis, T
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2003, 24 (03) : 771 - 784
  • [3] Thermal conductivity models for single and multiple filler carbon/liquid crystal polymer composites
    Hauser, Rebecca A.
    Keith, Jason M.
    King, Julia A.
    Holdren, Jennifer L.
    [J]. Journal of Applied Polymer Science, 2008, 110 (05): : 2914 - 2923
  • [4] Thermal Conductivity Models for Single and Multiple Filler Carbon/Liquid Crystal Polymer Composites
    Hauser, Rebecca A.
    Keith, Jason M.
    King, Julia A.
    Holdren, Jennifer L.
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 110 (05) : 2914 - 2923
  • [5] Predicting, Measuring, and Tailoring the Transverse Thermal Conductivity of Composites from Polymer Matrix and Metal Filler
    F. Danes
    B. Garnier
    T. Dupuis
    [J]. International Journal of Thermophysics, 2003, 24 : 771 - 784
  • [6] Role of Filler-Polymer Interface on the Thermal Conductivity in Polymer Composites
    Kumar, Vijendra
    Barnwal, Abhishek
    Shukla, R. K.
    Shakya, Jyoti
    [J]. JOURNAL OF POLYMER & COMPOSITES, 2020, 8 (01) : 53 - 70
  • [7] An investigation on thermal conductivity of constructal-filler polymer composites
    Wang, Xiaojian
    Kang, Wensheng
    Niu, Xiaohu
    Wang, Xiaoxue
    Wang, Liangbi
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 126
  • [8] Effects of Filler Distribution on Morphology and Thermal Conductivity of Polymer Composites
    Vanga-Bouanga, C.
    Savoie, S.
    Frechette, M. F.
    David, E.
    [J]. 2014 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA (CEIDP), 2014, : 775 - 779
  • [9] Enhanced thermal conductivity of polymer composites filled with hybrid filler
    Lee, GW
    Park, M
    Kim, J
    Lee, JI
    Yoon, HG
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2006, 37 (05) : 727 - 734
  • [10] Mechanical properties and morphologies of polypropylene/single-filler or hybrid-filler calcium carbonate composites
    Yang, Kun
    Yang, Qi
    Li, Guangxian
    Zhang, Ying
    Zhang, Peng
    [J]. POLYMER ENGINEERING AND SCIENCE, 2007, 47 (02): : 95 - 102