Machine Learning Training on Encrypted Data with TFHE

被引:0
|
作者
Montero, Luis [1 ]
Frery, Jordan [1 ]
Kherfallah, Celia [1 ]
Bredehoft, Roman [1 ]
Stoian, Andrei [1 ]
机构
[1] Zama, Paris, France
关键词
homomorphic encryption; machine learning; quantization;
D O I
10.1145/3643651.3659891
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an approach for outsourcing the training of machine learning (ML) models while preserving data confidentiality from malicious parties. We use fully homomorphic encryption (FHE) to build a unified training framework that works on encrypted data and learns quantized ML models. Our approach finds future applications in collaborative settings involving multiple parties working on confidential data, which can be horizontally or vertically split between data owners. We train logistic regression and multi-layer perceptrons on several datasets and show results that are comparable to the state-of-the-art.
引用
收藏
页码:71 / 76
页数:6
相关论文
共 50 条
  • [1] Supervised machine learning using encrypted training data
    Francisco-Javier González-Serrano
    Adrián Amor-Martín
    Jorge Casamayón-Antón
    [J]. International Journal of Information Security, 2018, 17 : 365 - 377
  • [2] Supervised machine learning using encrypted training data
    Gonzalez-Serrano, Francisco-Javier
    Amor-Martin, Adrian
    Casamayon-Anton, Jorge
    [J]. INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2018, 17 (04) : 365 - 377
  • [3] Private AI: Machine Learning on Encrypted Data
    Lauter, Kristin
    [J]. RECENT ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2022, : 97 - 113
  • [4] Machine Learning Approach for Analysing Encrypted Data
    Pradeepthi, K., V
    Tiwari, Vikas
    Saxena, Ashutosh
    [J]. 2018 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2018, : 70 - 73
  • [5] Machine Learning Classification over Encrypted Data
    Bost, Raphael
    Popa, Raluca Ada
    Tu, Stephen
    Goldwasser, Shafi
    [J]. 22ND ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2015), 2015,
  • [6] Machine learning algorithm for a homomorphic encrypted data set
    Jia, Chunfu
    Wang, Yafei
    Chen, Yang
    Sun, Mengjie
    Ge, Fengyi
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2020, 60 (06): : 456 - 463
  • [7] Efficient Machine Learning on Encrypted Data using Hyperdimensional Computing
    Nam, Yujin
    Zhou, Minxuan
    Gupta, Saransh
    De Micheli, Gabrielle
    Cammarota, Rosario
    Wilkerson, Chris
    Micciancio, Daniele
    Rosing, Tajana
    [J]. 2023 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN, ISLPED, 2023,
  • [8] NeuroCrypt: Machine Learning Over Encrypted Distributed Neuroimaging Data
    Nipuna Senanayake
    Robert Podschwadt
    Daniel Takabi
    Vince D. Calhoun
    Sergey M. Plis
    [J]. Neuroinformatics, 2022, 20 : 91 - 108
  • [9] NeuroCrypt: Machine Learning Over Encrypted Distributed Neuroimaging Data
    Senanayake, Nipuna
    Podschwadt, Robert
    Takabi, Daniel
    Calhoun, Vince D.
    Plis, Sergey M.
    [J]. NEUROINFORMATICS, 2022, 20 (01) : 91 - 108
  • [10] Negative Data in Data Sets for Machine Learning Training
    Maloney, Michael P.
    Coley, Connor W.
    Genheden, Samuel
    Carson, Nessa
    Helquist, Paul
    Norrby, Per-Ola
    Wiest, Olaf
    [J]. ORGANIC LETTERS, 2023, 25 (17) : 2945 - 2947