Probing the superconducting gap structure of ScRuSi via μSR and first-principles calculations

被引:1
|
作者
Panda, K. [1 ,2 ]
Bhattacharyya, A. [2 ]
Ferreira, P. N. [3 ,4 ]
Mondal, Rajib [5 ]
Thamizhavel, A. [6 ]
Adroja, D. T. [7 ,8 ]
Heil, C. [4 ]
Eleno, L. T. F. [3 ]
Hillier, A. D. [7 ]
机构
[1] Ariel Univ, Dept Phys, West Bank, IL-40700 Ariel, Israel
[2] Ramakrishna Mission Vivekananda Educ & Res Inst, Dept Phys, Howrah 711202, W Bengal, India
[3] Univ Sao Paulo, Escola Engn Lorena, DEMAR, BR-12612550 Lorena, Brazil
[4] Graz Univ Technol, Inst Theoret & Computat Phys, NAWI Graz, A-8010 Graz, Austria
[5] Kolkata Ctr, UGC DAE Consortium Sci Res, Kolkata 700106, India
[6] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Mumbai 400005, India
[7] Rutherford Appleton Lab, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England
[8] Univ Johannesburg, Phys Dept, Highly Correlated Matter Res Grp, POB 524, ZA-2006 Auckland Pk, South Africa
基金
巴西圣保罗研究基金会; 英国工程与自然科学研究理事会;
关键词
TRANSITION-TEMPERATURE; CRYSTALLOGRAPHIC DATA; MAGNETIC-STRUCTURE; PHOSPHIDES; DENSITY; RU;
D O I
10.1103/PhysRevB.109.224517
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we present a thorough investigation into the superconducting state of the ruthenium-based ternary equiatomic compound ScRuSi. Our analysis combines experimental techniques, including muon spin rotation/relaxation (mu SR) and low-temperature resistivity measurements, with theoretical insights derived from first-principles calculations. The low-temperature resistivity measurements reveal a distinct superconducting phase transition in the orthorhombic structure of ScRuSi at a critical temperature (TC) of 2.5 K. Further, the TF-mu SR analysis yields a gap-to-critical-temperature ratio of 2 Delta/kBTC = 2.71, a value consistent with results obtained from previous heat capacity measurements. The temperature dependence of the superconducting normalized depolarization rate is fully described by the isotropic s-wave gap model. Additionally, zero-field mu SR measurements indicate that the relaxation rate remains nearly identical below and above TC. This observation strongly suggests the preservation of time-reversal symmetry within the superconducting state. By employing the McMillan-Allen-Dynes equation, we calculate a TC of 2.11 K from first-principles calculations within the density functional theory framework. This calculated value aligns closely with the experimentally determined critical temperature. The coupling between the low-frequency phonon modes and the transition metal d-orbital states play an important role in governing the superconducting pairing in ScRuSi. The combination of experimental and theoretical approaches provides a comprehensive microscopic understanding of the superconducting nature of ScRuSi, offering insights into its critical temperature, pairing symmetry, and the underlying electron-phonon coupling mechanism.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] First-principles calculations of physical properties and superconductivity of orthorhombic ScRuSi and ZrRhSi
    Uzunok, H. Y.
    Bagci, S.
    Karaca, Ertugrul
    Tutuncu, H. M.
    Srivastava, G. P.
    PHYSICAL REVIEW B, 2020, 102 (13)
  • [2] Probing the nano-scale with first-principles calculations
    Tsetseris, Leonidas
    Pantelides, Sokrates T.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2008, 152 (1-3): : 109 - 113
  • [3] Electronic structure of superconducting copper intercalated transition metal dichalcogenides: First-principles calculations
    Jishi, R. A.
    Alyahyaei, H. M.
    PHYSICAL REVIEW B, 2008, 78 (14):
  • [4] First-principles calculations on electronic structure of PbTe
    Dow, H. S.
    Oh, M. W.
    Kim, B. S.
    Park, S. D.
    Lee, H. W.
    Wee, D. M.
    PROCEEDINGS ICT 07: TWENTY-SIXTH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 2008, : 90 - 93
  • [5] Electronic, vibrational, and superconducting properties of CaBeSi: First-principles calculations
    Bersier, C.
    Floris, A.
    Sanna, A.
    Profeta, G.
    Continenza, A.
    Gross, E. K. U.
    Massidda, S.
    PHYSICAL REVIEW B, 2009, 79 (10)
  • [6] First-principles calculations on the electronic structure of FeS
    Koutti, L
    Bengone, O
    Hugel, J
    COMPUTATIONAL MATERIALS SCIENCE, 2000, 17 (2-4) : 169 - 173
  • [7] First-principles calculations of pressure effects on the superconducting CaAlSi and SrAlSi
    Huang, GQ
    Chen, LF
    Liu, M
    Xing, DY
    PHYSICAL REVIEW B, 2005, 71 (17):
  • [8] Deciphering the atomic structure of a complex Sr/Ge (100) phase via scanning tunneling microscopy and first-principles calculations
    Lukanov, Boris
    Garrity, Kevin
    Ismail-Beigi, Sohrab
    Altman, Eric I.
    PHYSICAL REVIEW B, 2012, 85 (19):
  • [9] First-principles calculations of phonon transport across a vacuum gap
    Tokunaga, Takuro
    Arai, Masao
    Kobayashi, Kazuaki
    Hayami, Wataru
    Suehara, Shigeru
    Shiga, Takuma
    Park, Keunhan
    Francoeur, Mathieu
    PHYSICAL REVIEW B, 2022, 105 (04)
  • [10] Spin-orbit gap of graphene: First-principles calculations
    Yao, Yugui
    Ye, Fei
    Qi, Xiao-Liang
    Zhang, Shou-Cheng
    Fang, Zhong
    PHYSICAL REVIEW B, 2007, 75 (04):