Artificial Intelligence-assisted thyroid cancer diagnosis from Raman spectra of histological samples

被引:0
|
作者
Bellantuono, L. [1 ,2 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Biomed Traslaz & Neurosci DiBraiN Bar, I-70124 Bari, Italy
[2] Ist Nazl Fis Nucl, Sez Bari, I-70125 Bari, Italy
关键词
EXPLAINABLE AI; EPIDEMIC;
D O I
10.1393/ncc/i2024-24267-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Raman spectroscopy emerges as a highly promising diagnostic tool for thyroid cancer due to its capacity to discern biochemical alterations during cancer progression. This non-invasive and label/dye-free technique exhibits superior efficacy in discriminating malignant features compared to traditional molecular tests, thereby minimizing unnecessary surgeries. Nevertheless, a key challenge in adopting Raman spectroscopy lies in identifying significant patterns and peaks. This study proposes an artificial intelligence approach for distinguishing healthy/benign from malignant nodules, ensuring interpretable outcomes. Raman spectra from histological samples are collected, and a set of peaks is selected using a data-driven, label-independent approach. Machine Learning algorithms are trained based on the relative prominence of these peaks, achieving performance metrics with an area under the receiver operating characteristic curve exceeding 0.9. To enhance interpretability, eXplainable Artificial Intelligence (XAI) is employed to compute each feature's contribution to sample prediction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
    Loredana Bellantuono
    Raffaele Tommasi
    Ester Pantaleo
    Martina Verri
    Nicola Amoroso
    Pierfilippo Crucitti
    Michael Di Gioacchino
    Filippo Longo
    Alfonso Monaco
    Anda Mihaela Naciu
    Andrea Palermo
    Chiara Taffon
    Sabina Tangaro
    Anna Crescenzi
    Armida Sodo
    Roberto Bellotti
    Scientific Reports, 13
  • [2] An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
    Bellantuono, Loredana
    Tommasi, Raffaele
    Pantaleo, Ester
    Verri, Martina
    Amoroso, Nicola
    Crucitti, Pierfilippo
    Di Gioacchino, Michael
    Longo, Filippo
    Monaco, Alfonso
    Naciu, Anda Mihaela
    Palermo, Andrea
    Taffon, Chiara
    Tangaro, Sabina
    Crescenzi, Anna
    Sodo, Armida
    Bellotti, Roberto
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Artificial intelligence-assisted dermatology diagnosis: From unimodal to multimodal
    Luo, Nan
    Zhong, Xiaojing
    Su, Luxin
    Cheng, Zilin
    Ma, Wenyi
    Hao, Pingsheng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165
  • [4] Artificial Intelligence-Assisted Diagnosis for Early Intervention Patients
    Sierra, Ignacio
    Diaz-Diaz, Norberto
    Barranco, Carlos
    Carrasco-Villalon, Rocio
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [5] Artificial intelligence-assisted diagnosis of ocular surface diseases
    Zhang, Zuhui
    Wang, Ying
    Zhang, Hongzhen
    Samusak, Arzigul
    Rao, Huimin
    Xiao, Chun
    Abula, Muhetaer
    Cao, Qixin
    Dai, Qi
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2023, 11
  • [6] Artificial intelligence-assisted cancer diagnosis improves the efficiency of pathologists in prostatic biopsies
    Eloy, Catarina
    Marques, Ana
    Pinto, Joao
    Pinheiro, Jorge
    Campelos, Sofia
    Curado, Monica
    Vale, Joao
    Polonia, Antonio
    VIRCHOWS ARCHIV, 2023, 482 (03) : 595 - 604
  • [7] Artificial Intelligence-assisted Prostate Cancer Diagnosis: Radiologic-Pathologic Correlation
    Alcala Mata, Lidia
    Antonio Retamero, Juan
    Gupta, Rajan T.
    Garcia Figueras, Roberto
    Luna, Antonio
    RADIOGRAPHICS, 2021, 41 (06) : 1676 - 1697
  • [8] Assessment of Primary Human Liver Cancer Cells by Artificial Intelligence-Assisted Raman Spectroscopy
    Esposito, Concetta
    Janneh, Mohammed
    Spaziani, Sara
    Calcagno, Vincenzo
    Bernardi, Mario Luca
    Iammarino, Martina
    Verdone, Chiara
    Tagliamonte, Maria
    Buonaguro, Luigi
    Pisco, Marco
    Aversano, Lerina
    Cusano, Andrea
    CELLS, 2023, 12 (22)
  • [9] ARTIFICIAL INTELLIGENCE-ASSISTED OCCUPATIONAL LUNG-DISEASE DIAGNOSIS
    HARBER, P
    MCCOY, JM
    HOWARD, K
    GREER, D
    LUO, J
    CHEST, 1991, 100 (02) : 340 - 346
  • [10] Effectiveness of artificial intelligence-assisted colonoscopy in early diagnosis of colorectal cancer: a systematic review
    Mehta, Aashna
    Kumar, Harendra
    Yazji, Katia
    Wireko, Andrew A.
    Nagarajan, Jai Sivanandan
    Ghosh, Bikona
    Nahas, Ahmad
    Ojeda, Luis Morales
    Anand, Ayush
    Sharath, Medha
    Huang, Helen
    Garg, Tulika
    Isik, Arda
    INTERNATIONAL JOURNAL OF SURGERY, 2023, 109 (04) : 946 - 952