Dosimetric characteristics of 3D-printed and epoxy-based materials for particle therapy phantoms

被引:2
|
作者
Brunner, Jacob [1 ,2 ]
Langgartner, Lorenz [1 ,2 ]
Danhel, Hannah [1 ]
Birkfellner, Wolfgang [3 ]
Richter, Christian [4 ,5 ,6 ,7 ]
Wagenaar, Dirk [8 ]
Stock, Markus [2 ,9 ]
Georg, Dietmar [1 ,2 ]
Knaeusl, Barbara [1 ,2 ]
机构
[1] Med Univ Vienna, Dept Radiat Oncol, Vienna, Austria
[2] MedAustron Ion Therapy Ctr, Med Phys, Wiener Neustadt, Austria
[3] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria
[4] Tech Univ Dresden, Fac Med, OncoRay Natl Ctr Radiat Res Oncol, Dresden, Germany
[5] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[6] Helmholz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[7] Tech Univ Dresden, Dept Radiotherapy & Radiat Oncol, Fac Med, Dresden, Germany
[8] Univ Groningen, Univ Med Ctr Groningen, Dept Radiat Oncol, Groningen, Netherlands
[9] Karl Landsteiner Univ Hlth Sci, Wiener Neustadt, Austria
来源
FRONTIERS IN PHYSICS | 2024年 / 12卷
关键词
proton therapy; carbon ion therapy; additive manufacturing; phantom; tissue surrogate; radiotherapy; adaptive; DirectSPR; MONTE-CARLO SIMULATIONS; DUAL-ENERGY CT; RANGE PREDICTION; PROTON THERAPY; STOPPING-POWER; HEAD;
D O I
10.3389/fphy.2024.1323788
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Objective 3D printing has seen use in many fields of imaging and radiation oncology, but applications in (anthropomorphic) phantoms, especially for particle therapy, are still lacking. The aim of this work was to characterize various available 3D printing methods and epoxy-based materials with the specific goal of identifying suitable tissue surrogates for dosimetry applications in particle therapy.Methods 3D-printed and epoxy-based mixtures of varying ratios combining epoxy resin, bone meal, and polyethylene powder were scanned in a single-energy computed tomography (CT), a dual-energy CT, and a mu CT scanner. Their CT-predicted attenuation was compared to measurements in a 148.2 MeV proton and 284.7 MeV/u carbon ion beam. The sample homogeneity was evaluated in the respective CT images and in the carbon beam, additionally via widening of the Bragg peak. To assess long-term stability attenuation, size and weight measurements were repeated after 6-12 months.Results Four 3D-printed materials, acrylonitrile butadiene styrene polylactic acid, fused deposition modeling printed nylon, and selective laser sintering printed nylon, and various ratios of epoxy-based mixtures were found to be suitable tissue surrogates. The materials' predicted stopping power ratio matched the measured stopping power ratio within 3% for all investigated CT machines and protocols, except for mu CT scans employing cone beam CT technology. The heterogeneity of the suitable surrogate samples was adequate, with a maximum Bragg peak width increase of 11.5 +/- 2.5%. The repeat measurements showed no signs of degradation after 6-12 months.Conclusion We identified surrogates for soft tissue and low- to medium-density bone among the investigated materials. This allows low-cost, adaptable phantoms to be built for quality assurance and end-to-end tests for particle therapy.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] Preliminary Study of the Dosimetric Characteristics of 3D-printed Materials with Megavoltage Photons
    Jeong, Seonghoon
    Yoon, Myonggeun
    Chung, Weon Kuu
    Kim, Dong Wook
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 67 (01) : 189 - 194
  • [2] Preliminary study of the dosimetric characteristics of 3D-printed materials with megavoltage photons
    Seonghoon Jeong
    Myonggeun Yoon
    Weon Kuu Chung
    Dong Wook Kim
    Journal of the Korean Physical Society, 2015, 67 : 189 - 194
  • [3] DOSIMETRIC CHARACTERISTICS OF 3D PRINTED MATERIALS
    Jaselske, Evelina
    Adliene, Diana
    Rudzianskas, Viktoras
    Korobeinikova, Erika
    MEDICAL PHYSICS IN THE BALTIC STATES, 2017, : 52 - 55
  • [4] Personalized 3D-printed anthropomorphic phantoms for dosimetry in charged particle fields
    Halloran, Andrew
    Newhauser, Wayne
    Chu, Connel
    Donahue, William
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (22):
  • [5] A Systematic Review on 3D-Printed Imaging and Dosimetry Phantoms in Radiation Therapy
    Tino, Rance
    Yeo, Adam
    Leary, Martin
    Brandt, Milan
    Kron, Tomas
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2019, 18 : 1 - 14
  • [6] Retrospective dosimetric analysis of 3D-printed bolus
    Dewit, B.
    Depuydt, T.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1535 - S1536
  • [7] Gyroid structures for 3D-printed heterogeneous radiotherapy phantoms
    Tino, R.
    Leary, M.
    Yeo, A.
    Brandt, M.
    Kron, T.
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (21):
  • [8] Mechanical testing and comparison of porcine tissue, silicones and 3D-printed materials for cardiovascular phantoms
    Illi, Joel
    Ilic, Marc
    Stark, Anselm Walter
    Amstutz, Cornelia
    Burger, Juergen
    Zysset, Philippe
    Haeberlin, Andreas
    Grani, Christoph
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [9] 3D-printed macroporous materials
    Ferrer, Juan
    Bismarck, Alexander
    Menner, Angelika
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [10] 3D-Printed Mechanochromic Materials
    Peterson, Gregory I.
    Larsen, Michael B.
    Ganter, Mark A.
    Storti, Duane W.
    Boydston, Andrew J.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (01) : 577 - 583