A General Approach to Website Question Answering with Large Language Models

被引:0
|
作者
Ding, Yilang [1 ]
Nie, Jiawei [1 ]
Wu, Di [1 ]
Liu, Chang [1 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
来源
关键词
D O I
10.1109/SOUTHEASTCON52093.2024.10500166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Language Models (LMs), in their most basic form, perform just like any other machine learning model - they produce interpolations and extrapolations based on their training distribution. Although recent models such as OpenAl's GPT-4 have demonstrated unprecedented capabilities in absorbing the copious volumes of information in their training data, their ability to consistently reproduce factual information still remains unproven. Additionally, LMs on their own lack the ability to keep up to date with real life data without frequent fine-tuning. These drawbacks effectively render base LMs unserviceable in Question Answering scenarios where they must respond to queries regarding volatile information. Retrieval Augmented Generation (RAG) and Tool Learning Ill were proposed as solutions to these problems, and with the development and usage of associated libraries, the aforementioned problems can be greatly mitigated. In this paper, we ponder a general approach to website Question Answering that integrates the zero-shot decision-making capabilities of LMs with the RAG capabilities of LangChain and is able to be kept up to date with dynamic information without the need for constant fine-tuning.
引用
收藏
页码:894 / 896
页数:3
相关论文
共 50 条
  • [1] Reasoning with large language models for medical question answering
    Lucas, Mary M.
    Yang, Justin
    Pomeroy, Jon K.
    Yang, Christopher C.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (09)
  • [2] Enhancing Biomedical Question Answering with Large Language Models
    Yang, Hua
    Li, Shilong
    Goncalves, Teresa
    INFORMATION, 2024, 15 (08)
  • [3] An astronomical question answering dataset for evaluating large language models
    Jie Li
    Fuyong Zhao
    Panfeng Chen
    Jiafu Xie
    Xiangrui Zhang
    Hui Li
    Mei Chen
    Yanhao Wang
    Ming Zhu
    Scientific Data, 12 (1)
  • [4] Tree -of-Reasoning Question Decomposition for Complex Question Answering with Large Language Models
    Zhang, Kun
    Zeng, Jiali
    Meng, Fandong
    Wang, Yuanzhuo
    Sun, Shiqi
    Bai, Long
    Shen, Huawei
    Zhou, Jie
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 17, 2024, : 19560 - 19568
  • [5] MedExpQA: Multilingual benchmarking of Large Language Models for Medical Question Answering
    Alonso, Inigo
    Oronoz, Maite
    Agerri, Rodrigo
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 155
  • [6] Chart Question Answering based on Modality Conversion and Large Language Models
    Liu, Yi-Cheng
    Chu, Wei-Ta
    PROCEEDINGS OF THE FIRST ACM WORKSHOP ON AI-POWERED QUESTION ANSWERING SYSTEMS FOR MULTIMEDIA, AIQAM 2024, 2024, : 19 - 24
  • [7] Evaluating the Adaptability of Large Language Models for Knowledge-aware Question and Answering
    Thakkar, Jay
    Kolekar, Suresh
    Gite, Shilpa
    Pradhan, Biswajeet
    Alamri, Abdullah
    INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2024, 17 (01):
  • [8] Evaluating Open-Domain Question Answering in the Era of Large Language Models
    Kamalloo, Ehsan
    Dziri, Nouha
    Clarke, Charles L. A.
    Rafiei, Davood
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 5591 - 5606
  • [9] A medical question answering system using large language models and knowledge graphs
    Guo, Quan
    Cao, Shuai
    Yi, Zhang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (11) : 8548 - 8564
  • [10] Toward expert-level medical question answering with large language models
    Karan Singhal
    Tao Tu
    Juraj Gottweis
    Rory Sayres
    Ellery Wulczyn
    Mohamed Amin
    Le Hou
    Kevin Clark
    Stephen R. Pfohl
    Heather Cole-Lewis
    Darlene Neal
    Qazi Mamunur Rashid
    Mike Schaekermann
    Amy Wang
    Dev Dash
    Jonathan H. Chen
    Nigam H. Shah
    Sami Lachgar
    Philip Andrew Mansfield
    Sushant Prakash
    Bradley Green
    Ewa Dominowska
    Blaise Agüera y Arcas
    Nenad Tomašev
    Yun Liu
    Renee Wong
    Christopher Semturs
    S. Sara Mahdavi
    Joelle K. Barral
    Dale R. Webster
    Greg S. Corrado
    Yossi Matias
    Shekoofeh Azizi
    Alan Karthikesalingam
    Vivek Natarajan
    Nature Medicine, 2025, 31 (3) : 943 - 950