Geological bodies prone to disasters, such as glaciers, landslides, and land subsidence, undergo threedimensional (3-D) movement. Spaceborne Synthetic Aperture Radar (SAR) satellites commonly capture relative directional motion for Earth observation. However, this begs the question of how to track the 3-D movement of geological bodies. Presented here, the 3-D Deformation Inversion toolbox MATLAB-based concurrently processes ascending and descending SAR-derived datasets acquired from either Pixel Offset Tracking (POT) or Differential Interferometric SAR (DInSAR) methodology, in addition, generates long-term 3-D deformation and interactive point time series and line section information, also dynamic map visualizations. It is the ability to calculate the least squares solution using truncated or multi-order Tikhonov regularized Singular Value Decomposition (SVD). Three various scenarios are employed to assess processing capabilities. The L-curve method finds the optimal calculation parameters tailored to various objects. The toolbox's effectiveness and applicability enhance the potential for evolutionary dynamic analysis in geoscience.