Finite Difference Approximation with ADI Scheme for Two-Dimensional Keller-Segel Equations

被引:1
|
作者
Lu, Yubin [1 ]
Chen, Chi-An [1 ]
Li, Xiaofan [1 ]
Liu, Chun [1 ]
机构
[1] Illinois Inst Technol, Coll Comp, Dept Appl Math, Chicago, IL 60616 USA
关键词
Keller-Segel equations; energy dissipation; positive preserving; ADI scheme; PHASE-FIELD MODEL; ENERGY; CHEMOTAXIS; PLANCK; DISCRETIZATION; 2ND-ORDER; CAHN;
D O I
10.4208/cicp.OA-2023-0284
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Keller -Segel systems are a set of nonlinear partial differential equations used to model chemotaxis in biology. In this paper, we propose two alternating direction implicit (ADI) schemes to solve the 2D Keller -Segel systems directly with minimal computational cost, while preserving positivity, energy dissipation law and mass conservation. One scheme unconditionally preserves positivity, while the other does so conditionally. Both schemes achieve second -order accuracy in space, with the former being first -order accuracy in time and the latter second -order accuracy in time. Besides, the former scheme preserves the energy dissipation law asymptotically. We validate these results through numerical experiments, and also compare the efficiency of our schemes with the standard five -point scheme, demonstrating that our approaches effectively reduce computational costs.
引用
收藏
页码:1352 / 1386
页数:35
相关论文
共 50 条
  • [1] Stability property of the two-dimensional Keller-Segel model
    Raczynski, Andrzej
    ASYMPTOTIC ANALYSIS, 2009, 61 (01) : 35 - 59
  • [2] STOCHASTIC PARTICLE APPROXIMATION OF THE KELLER-SEGEL EQUATION AND TWO-DIMENSIONAL GENERALIZATION OF BESSEL PROCESSES
    Fournier, Nicolas
    Jourdain, Benjamin
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (05): : 2807 - 2861
  • [3] THE TWO-DIMENSIONAL KELLER-SEGEL MODEL AFTER BLOW-UP
    Dolbeault, Jean
    Schmeiser, Christian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (01) : 109 - 121
  • [4] A Note on the Subcritical Two Dimensional Keller-Segel System
    Carrillo, Jose A.
    Chen, Li
    Liu, Jian-Guo
    Wang, Jinhuan
    ACTA APPLICANDAE MATHEMATICAE, 2012, 119 (01) : 43 - 55
  • [5] A Note on the Subcritical Two Dimensional Keller-Segel System
    Jose A. Carrillo
    Li Chen
    Jian-Guo Liu
    Jinhuan Wang
    Acta Applicandae Mathematicae, 2012, 119 : 43 - 55
  • [6] Optimal control of Keller-Segel equations
    Ryu, SU
    Yagi, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (01) : 45 - 66
  • [7] SMALL-MASS SOLUTIONS IN THE TWO-DIMENSIONAL KELLER-SEGEL SYSTEM COUPLED TO THE NAVIER-STOKES EQUATIONS
    Winkler, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 2041 - 2080
  • [8] Bound-preserving finite element approximations of the Keller-Segel equations
    Badia, Santiago
    Bonilla, Jesus
    Gutierrez-Santacreu, Juan Vicente
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (03): : 609 - 642
  • [9] THE KELLER-SEGEL SYSTEM ON THE TWO-DIMENSIONAL-HYPERBOLIC SPACE
    Maheux, Patrick
    Pierfelice, Vittoria
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) : 5036 - 5065
  • [10] CROSS DIFFUSION PREVENTING BLOW-UP IN THE TWO-DIMENSIONAL KELLER-SEGEL MODEL
    Hittmeir, Sabine
    Juengel, Ansgar
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 997 - 1022