Fisher Information Matrix for Generalized Poisson Regression: Evaluation of the Log-Likelihood Function

被引:0
|
作者
Dinnullah, Riski Nur Istiqomah [1 ,2 ]
Abusini, Sobri [1 ]
Fitriani, Rahma [1 ]
Marjono
Fayeldi, Trija [2 ]
Sumara, Rauzan [3 ]
机构
[1] Univ Brawijaya, Malang, Indonesia
[2] Univ PGRI Kanjuruhan Malang, Jl S Supriadi 48, Malang, Indonesia
[3] Warsaw Univ Technol, PL-00661 Warsaw, Poland
关键词
Fisher Information Matrix; Generalized Poisson Regression; Log-likelihood function; MODEL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fisher information is an essential element in statistical modeling and is required for a matrix-based parameter estimator to find the optimal solution. The information matrix is calculated by subtracting the expectation value matrix of the function to be maximized by a given amount. Positive semidefiniteness is observed in this matrix with regard to each parameter value. The Fisher information matrix (FIM) shows how parameters in a probabilistic model are related to each other. It is an inherent consequence of the procedure of maximum likelihood estimation (MLE). In this paper, we perform an analytical evaluation of the FIM for Generalized Poisson Regression (GPR). In the previous stage, we analyzed the expectation of the second derivative, where the evaluation function is the log-likelihood function for the GPR model.
引用
收藏
页码:933 / 939
页数:7
相关论文
共 50 条
  • [1] On Fisher information matrices and profile log-likelihood functions in generalized skew-elliptical models
    Ley C.
    Paindaveine D.
    METRON, 2010, 68 (3) : 235 - 250
  • [2] A NEW METHOD FOR EVALUATING THE LOG-LIKELIHOOD GRADIENT, THE HESSIAN, AND THE FISHER INFORMATION MATRIX FOR LINEAR DYNAMIC-SYSTEMS
    SEGAL, M
    WEINSTEIN, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (03) : 682 - 687
  • [3] Generalized log-likelihood functions and Bregman divergences
    Wada, Tatsuaki
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)
  • [4] Improving logistic regression on the imbalanced data by a novel penalized log-likelihood function
    Zhang, Lili
    Geisler, Trent
    Ray, Herman
    Xie, Ying
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (13) : 3257 - 3277
  • [5] Human Pose Regression with Residual Log-likelihood Estimation
    Li, Jiefeng
    Bian, Siyuan
    Zeng, Ailing
    Wang, Can
    Pang, Bo
    Liu, Wentao
    Lu, Cewu
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 11005 - 11014
  • [6] On tests for global maximum of the log-likelihood function
    Blatt, Doron
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (07) : 2510 - 2525
  • [7] Generalized selection combining based on the log-likelihood ratio
    Kim, SW
    Kim, YG
    Simon, MK
    2003 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5: NEW FRONTIERS IN TELECOMMUNICATIONS, 2003, : 2789 - 2794
  • [8] A Log-Likelihood Ratio based Generalized Belief Propagation
    Amaricai, Alexandru
    Bahrami, Mohsem
    Vasic, Bane
    PROCEEDINGS OF 18TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES (IEEE EUROCON 2019), 2019,
  • [9] Generalized selection combining based on the log-likelihood ratio
    Kim, SW
    Kim, YG
    Simon, MK
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2004, 52 (04) : 521 - 524
  • [10] On Quantization of Log-Likelihood Ratios for Maximum Mutual Information
    Bauer, Andreas Winkel
    Matz, Gerald
    2015 IEEE 16TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2015, : 316 - 320