Experimental and Numerical Characterization of Granular Material Until Shock Loading

被引:0
|
作者
Ruiz-Ripoll, M. L. [1 ]
Riedel, W. [2 ]
Stocchi, A. [1 ]
Bagusat, F. [2 ]
Schmitt, D. [1 ]
Sauer, M. [2 ]
Roller, C. [1 ]
Stolz, A. [1 ]
机构
[1] Fraunhofer Inst High Speed Dynam, Ernst Mach Inst, EMI, Klingelberg 1, D-79588 Efringen Kirchen, Germany
[2] Fraunhofer Inst High Speed Dynam, Ernst Mach Inst, EMI, Ernst Zermelo Str, D-79100 Freiburg, Germany
关键词
Dynamic strength; Shock compression; Split Hopkinson bar; Granular material; Numerical modeling; SOIL BEHAVIOR; SAND; INTERFEROMETER; CONCRETE; EQUATION; STATE;
D O I
10.1007/s40870-024-00428-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work describes the characterization of two different granular materials, a fine cohesive and a coarse cohesionless soil, with regard to their behavior under high-rate loading. The conditions range from quasi-static ( 10 5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{5}$$\end{document} s - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{-1}$$\end{document} ) to dynamic strength ( 10 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{2}$$\end{document} s - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{-1}$$\end{document} ) using a standard press and a Split-Hopkinson Bar (SHB) with a triaxial pressure cell. Furthermore, shock compression ( 10 5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{5}$$\end{document} s - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{-1}$$\end{document} ) is investigated in a newly developed plate impact capsule. The experimental data is used to parameterize both types of soils with two different dynamic material descriptions, a simple model with Drucker-Prager Strength and p- alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha$$\end{document} EOS and, partly extending from there, a model with piecewise linear dependencies for both volumetric compaction and strength. The reproduction quality of both material models is quantitatively assessed using Finite Element simulations of the dynamic tests and discussed. They can potentially serve in future numerical analyses of complex transient dynamic events, such as explosively-driven ground shock or high-velocity penetration into the soil.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Experimental loading on granular material.
    Moran, DE
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE, 1925, 199 : 493 - 501
  • [2] Crushing a weak granular material: experimental numerical analyses
    Lobo-Guerrero, S
    Vallejo, LE
    [J]. GEOTECHNIQUE, 2005, 55 (03): : 245 - 249
  • [3] Dynamic characterization and numerical simulation of an unbound granular material
    Rondón Quintana, Hugo Alexander
    Lizcano Peláez, Arcesio
    [J]. Carreteras, 2011, 4 (175): : 6 - 24
  • [4] A discrete numerical study of the effect of loading conditions on granular material response
    Evans, T. M.
    Zhao, X.
    [J]. DEFORMATION CHARACTERISTICS OF GEOMATERIALS, VOLS 1 AND 2, 2008, : 907 - 914
  • [5] Experimental and numerical analysis of a 2-D granular material
    Calvetti, F
    [J]. NUMERICAL MODELS IN GEOMECHANICS - NUMOG VI, 1997, : 39 - 44
  • [6] Unbound granular material characterization from stress path loading tests
    Seyhan, Ü
    Tutumluer, E
    [J]. RECENT ADVANCES IN THE CHARACTERIZATION OF TRANSPORTATION GEO-MATERIALS, 1999, (89): : 49 - 60
  • [7] Shock dynamics in granular chains: numerical simulations and comparison with experimental tests
    Ngoc-Son Nguyen
    Brogliato, Bernard
    [J]. GRANULAR MATTER, 2012, 14 (03) : 341 - 362
  • [8] Shock dynamics in granular chains: numerical simulations and comparison with experimental tests
    Ngoc-Son Nguyen
    Bernard Brogliato
    [J]. Granular Matter, 2012, 14 : 341 - 362
  • [9] An experimental and numerical study of transversal dispersion of granular material on a vibrating conveyor
    Simsek, Erdem
    Wirtz, Siegmar
    Scherer, Viktor
    Kruggel-Emden, Harald
    Grochowski, Rafal
    Walzel, Peter
    [J]. PARTICULATE SCIENCE AND TECHNOLOGY, 2008, 26 (02) : 177 - 196
  • [10] Experimental and numerical research on heat and air flow through a granular material
    Szymanek, E.
    Tyliszczak, A.
    [J]. XXIII FLUID MECHANICS CONFERENCE (KKMP 2018), 2018, 1101