Identification of the optical isomers using laser induced breakdown spectroscopy combined with machine learning

被引:0
|
作者
Junjuri, Rajendhar [1 ,2 ,3 ]
Tarai, Akash Kumar [1 ]
Gundawar, Manoj Kumar [1 ]
机构
[1] Univ Hyderabad, Adv Ctr Res High Energy Mat, Cent Univ Campus PO,Prof C R Rao Rd, Hyderabad 500046, Telangana, India
[2] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[3] Friedrich Schiller Univ Jena, Inst Phys Chem, Helmholtzweg 4, D-07743 Jena, Germany
来源
关键词
Laser induced breakdown spectroscopy; Optical isomers; Chemometrics; Machine learning; AMINO-ACIDS; CLASSIFICATION; LIBS; ENANTIOMERS; SEPARATION;
D O I
10.1007/s12596-024-01877-z
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore the possibility of extending the LIBS application combined with machine learning for the identification of optical isomers. Three sets of optical isomers, viz., Tryptophan, Alanine, and Leucine, were chosen to demonstrate this feasibility. Each set comprises D, L, and DL isomers. Identification of specific optical isomers is crucial in the field of pharmaceuticals as they account for more than 50% of drugs in the current market. Desired beneficial effects can only be obtained from using a particular isomer drug, while the intake of others may result in adverse side effects. Herein, for the first time, to the best of our knowledge, we report concurrent identification and separation of optical isomers using laser-induced breakdown spectroscopy (LIBS). The plasma diagnostic studies revealed that the plasma of DL isomer has a higher temperature compared to the remaining two types. The time-resolved studies also supported this observation, which demonstrated a higher decay time for the spectral lines of the DL isomer. The Principal Component Analysis (PCA) has revealed that optical isomers can be well separated. Further, Logistic Regression (LR) and Support Vector Machine (SVM) analysis quantitatively measured the classification accuracies. The results demonstrated that isomers can be recognized with similar to 93 - 100% accuracy. In order to avoid the influence of contaminates, the analysis is repeated by removing the spectral lines of containments and achieved accuracies of more than 90%. These results indicate that LIBS can be utilized as a promising technique for separating optical isomers, which immediately impacts various fields such as pharmaceuticals, agrochemicals, and food additives.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Identification of Graves' ophthalmology by laser-induced breakdown spectroscopy combined with machine learning method
    Li, Jingjing
    Chen, Feng
    Huang, Guangqian
    Zhang, Siyu
    Wang, Weiliang
    Tang, Yun
    Chu, Yanwu
    Yao, Jian
    Guo, Lianbo
    Jiang, Fagang
    FRONTIERS OF OPTOELECTRONICS, 2021, 14 (03) : 321 - 328
  • [2] Laser-Induced Breakdown Spectroscopy Combined with Machine Learning for the Identification of Lung Cancer Tumors
    Li, Han
    Sun, Haoran
    Gao, Xun
    JOURNAL OF APPLIED SPECTROSCOPY, 2025, : 166 - 174
  • [3] Identification of Graves’ ophthalmology by laser-induced breakdown spectroscopy combined with machine learning method
    Jingjing Li
    Feng Chen
    Guangqian Huang
    Siyu Zhang
    Weiliang Wang
    Yun Tang
    Yanwu Chu
    Jian Yao
    Lianbo Guo
    Fagang Jiang
    Frontiers of Optoelectronics, 2021, 14 : 321 - 328
  • [4] Classification of human tooth using laser-induced breakdown spectroscopy combined with machine learning
    Tarai, Akash Kumar
    Junjuri, Rajendhar
    Dhobley, Akshay
    Gundawar, Manoj Kumar
    JOURNAL OF OPTICS-INDIA, 2024, 53 (04): : 3810 - 3820
  • [5] Quantitative determination of phosphorus in seafood using laser-induced breakdown spectroscopy combined with machine learning
    Tian, Ye
    Chen, Qian
    Lin, Yuqing
    Lu, Yuan
    Li, Ying
    Lin, Hong
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2021, 175
  • [6] Identification of aluminum alloy by laser-induced breakdown spectroscopy combined with machine algorithm
    Dai, Yujia
    Zhao, Shangyong
    Song, Chao
    Gao, Xun
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2021, 63 (06) : 1629 - 1634
  • [7] Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Plastics/Polymers Identification
    Stefas, Dimitrios
    Gyftokostas, Nikolaos
    Bellou, Elli
    Couris, Stelios
    ATOMS, 2019, 7 (03) : 1 - 13
  • [8] Combined laser-induced breakdown spectroscopy and hyperspectral imaging with machine learning for the classification and identification of rice geographical origin
    Liu, Yuanyuan
    Zhao, Shangyong
    Gao, Xun
    Fu, Shaoyan
    Song, Chao
    Dou, Yinping
    Song, Shaozhong
    Qi, Chunyan
    Lin, Jingquan
    RSC ADVANCES, 2022, 12 (53) : 34520 - 34530
  • [9] Rapid Identification of Homogeneous Alloys Based on Laser-Induced Breakdown Spectroscopy Combined with Machine-Learning Algorithms
    Li, Wanxue
    He, Yaxiong
    Li, Yang
    Cai, Feinan
    Zhang, Yong
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (17)
  • [10] Identification of plastics by laser-induced breakdown spectroscopy combined with support vector machine algorithm
    Yu Yang
    Hao Zhong-Qi
    Li Chang-Mao
    Guo Lian-Bo
    Li Kuo-Hu
    Zeng Qing-Dong
    Li Xiang-You
    Ren Zhao
    Zeng Xiao-Yan
    ACTA PHYSICA SINICA, 2013, 62 (21)