A deep neural network estimation of brain age is sensitive to cognitive impairment and decline

被引:0
|
作者
Yang, Yisu [1 ]
Sathe, Aditi [1 ]
Schilling, Kurt [3 ,7 ]
Shashikumar, Niranjana [1 ]
Moore, Elizabeth [1 ]
Dumitrescu, Logan [1 ,2 ]
Pechman, Kimberly R. [1 ]
Landman, Bennett A. [1 ,3 ,4 ,5 ,6 ]
Gifford, Katherine A. [1 ]
Hohman, Timothy J. [1 ,2 ]
Jefferson, Angela L. [1 ,7 ]
Archer, Derek B. [1 ,2 ]
机构
[1] Vanderbilt Univ, Vanderbilt Memory & Alzheimers Ctr, Sch Med, Nashville, TN USA
[2] Vanderbilt Univ, Vanderbilt Genet Inst, Med Ctr, Nashville, TN 37212 USA
[3] Vanderbilt Univ, Inst Imaging Sci, Med Ctr, Nashville, TN 37212 USA
[4] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37212 USA
[5] Vanderbilt Univ, Dept Elect & Comp Engn, Nashville, TN 37212 USA
[6] Vanderbilt Univ, Dept Radiol & Radiol Sci, Med Ctr, Nashville, TN 37212 USA
[7] Vanderbilt Univ, Dept Med, Med Ctr, Nashville, TN 37212 USA
基金
美国国家卫生研究院;
关键词
Alzheimer's disease; free-water correction; deep neural network; cognition; LIFE-SPAN CHANGES; THALAMIC VOLUME; MEMORY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The greatest known risk factor for Alzheimer's disease (AD) is age. While both normal aging and AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. Recent developments in artificial intelligence have encouraged studies to leverage neuroimagingderived measures and deep learning approaches to predict brain age, which has shown promise as a sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional anisotropy (FA(FWcorr)) and FW maps that allow for the separation of tissue from fluid in a scan. We built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship of actual age and predicted brain ages with cognition. We found that all models accurately predicted actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62x10(-32); T1: r=0.61, p=1.45x10(-26), FW+T1: r=0.77, p=6.48x10(-50)) and distinguished between CU and mild cognitive impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age showing best performance. Additionally, all predicted brain age models were significantly associated with cross-sectional cognition (memory, FW: beta=-1.094, p=6.32x10(-7); T1: beta=-1.331, p=6.52x10(-7); FW+T1: beta=-1.476, p=2.53x10(-10); executive function, FW: beta=-1.276, p=1.46x10(-9); T1: beta=-1.337, p=2.52x10(-7); FW+T1: beta=-1.850, p=3.85x10(-17)) and longitudinal cognition (memory, FW: beta=-0.091, p=4.62x10(-11); T1: beta=-0.097, p=1.40x10(-8); FW+T1: beta=-0.101, p=1.35x10(-11); executive function, FW: beta=-0.125, p=1.20x10(-10); T1: beta=-0.163, p=4.25x10(-12); FW+T1: beta=-0.158, p=1.65x10(-14)). Our findings provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and support predicted brain age as a sensitive biomarker of cognition and cognitive decline.
引用
收藏
页码:148 / 162
页数:15
相关论文
共 50 条
  • [1] Longitudinal brain age estimation is a sensitive marker of early cognitive decline in multiple sclerosis
    Hogestol, E. A.
    Emhjellen, P. E.
    Nygaard, G. O.
    Kaufmann, T.
    Czajkowski, N. O.
    Beyer, M. K.
    Sowa, P.
    Andreassen, O. A.
    Celius, E. G.
    Landro, N. I.
    Westlye, L. T.
    Harbo, H. F.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 465 - 465
  • [2] Disrupted morphological brain network organization in subjective cognitive decline and mild cognitive impairment
    Chen, Yuxin
    Liang, Lingyan
    Wei, Yichen
    Liu, Ying
    Li, Xiaocheng
    Zhang, Zhiguo
    Li, Linling
    Deng, Demao
    [J]. BRAIN IMAGING AND BEHAVIOR, 2024, 18 (02) : 387 - 395
  • [3] A brain network for deep brain stimulation induced cognitive decline in Parkinson's disease
    Reich, Martin M.
    Hsu, Joey
    Ferguson, Michael
    Schaper, Frederic L. W. V. J.
    Joutsa, Juho
    Roothans, Jonas
    Nickl, Robert C.
    Frankemolle-Gilbert, Anneke
    Alberts, Jay
    Volkmann, Jens
    Fox, Michael D.
    [J]. BRAIN, 2022, 145 (04) : 1410 - 1421
  • [4] End-to-End Deep Neural Network Age Estimation
    Ghahremani, Pegah
    Nidadavolu, Phani Sankar
    Chen, Nanxin
    Villalba, Jesus
    Povey, Daniel
    Khudanpur, Sanjeev
    Dehak, Najim
    [J]. 19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 277 - 281
  • [5] Graph Learning and Deep Neural Network Ensemble for Supporting Cognitive Decline Assessment
    Antonesi, Gabriel
    Rancea, Alexandru
    Cioara, Tudor
    Anghel, Ionut
    [J]. TECHNOLOGIES, 2024, 12 (01)
  • [6] Is mild cognitive impairment in Parkinson's disease predictive for further cognitive decline after deep brain stimulation?
    Geurtsen, G. J.
    Schmand, B. A.
    de Bie, R. M. A.
    Odekerken, V. J. J.
    Schuurman, R. P.
    [J]. MOVEMENT DISORDERS, 2013, 28 : S181 - S182
  • [7] Commentary on age-associated memory impairment, age-related cognitive decline and mild cognitive impairment
    Ferris, SH
    Kluger, A
    [J]. AGING NEUROPSYCHOLOGY AND COGNITION, 1996, 3 (02) : 148 - 153
  • [8] Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals
    Volkow, ND
    Gur, RC
    Wang, GJ
    Fowler, JS
    Moberg, PJ
    Ding, YS
    Hitzemann, R
    Smith, G
    Logan, J
    [J]. AMERICAN JOURNAL OF PSYCHIATRY, 1998, 155 (03): : 344 - 349
  • [9] Predicting rate of cognitive decline at baseline using a deep neural network with multidata analysis
    Candemir, Sema
    Nguyen, Xuan, V
    Prevedello, Luciano M.
    Bigelow, Matthew T.
    White, Richard D.
    Erdal, Barbaros S.
    [J]. JOURNAL OF MEDICAL IMAGING, 2020, 7 (04)
  • [10] Microstructural brain changes track cognitive decline in mild cognitive impairment
    Reas, Emilie T.
    Hagler, Donald J., Jr.
    White, Nathan S.
    Kuperman, Joshua M.
    Bartsch, Hauke
    Wierenga, Christina E.
    Galasko, Douglas
    Brewer, James B.
    Dale, Anders M.
    McEvoy, Linda K.
    [J]. NEUROIMAGE-CLINICAL, 2018, 20 : 883 - 891