Effects of primary aberration on the spatiotemporal optical vortex focus

被引:0
|
作者
Liu, Yong [1 ]
Kuang, Cuifang [2 ,3 ,4 ]
机构
[1] Shanghai Univ Elect Power, Coll Elect & Informat Engn, Shanghai 200090, Peoples R China
[2] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Extreme Photon & Instrumentat, Hangzhou 310027, Peoples R China
[3] ZJU Global Sci & Technol Innovat Ctr, Hangzhou 311215, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
structured light; diffraction theory; spatiotemporal optical vortex; SEIDEL ABERRATIONS; VECTOR DIFFRACTION; SYSTEMS; BESSEL; BEAMS; FIELD;
D O I
10.1088/2040-8986/ad535b
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A spatiotemporal optical vortex (STOV) with transverse orbital angular momentum has several potential applications. However, refractive index mismatch, beam tilt and optical path misalignment are often inevitable during the application of an optical system. To investigate the focusing field of light pulse, the effects of primary aberrations such as the spherical aberration, coma, and astigmatism were analyzed. The simulation results indicate that three-dimension spatiotemporal distributions of the focusing light pulse are affected by primary aberration. On the principal coordinate planes, coma can distort the intensity structure and shift the STOV focus perpendicular to the propagation direction, while spherical aberration and astigmatism induce the actual STOV focus to shift along the propagation direction. Astigmatism do not affect the intensity structure of spatiotemporal plane without spiral phase, but stretch the 3D STOV focus along one spatial axis. Coma and astigmatism are necessary to be avoided to obtain a perfect STOV focus. It is helpful to improve the applications of STOV focus, such as optical tweezers, microscopy, and communications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Energy backflow in the focus of an optical vortex
    Kotlyar, Victor V.
    Nalimov, Anton G.
    Stafeev, Sergey S.
    [J]. LASER PHYSICS, 2018, 28 (12)
  • [2] Atomic photoionization by spatiotemporal optical vortex pulses
    Chen, Yongkun
    Zhou, Yueming
    Li, Min
    Liu, Kunlong
    Ciappina, Marcelo F.
    Lu, Peixiang
    [J]. PHYSICAL REVIEW A, 2023, 107 (03)
  • [3] Twisted Spatiotemporal Optical Vortex Random Fields
    Hyde, M. W.
    [J]. IEEE PHOTONICS JOURNAL, 2021, 13 (02):
  • [4] Spatiotemporal characterization of ultrashort optical vortex pulses
    Miranda, Miguel
    Kotur, Marija
    Rudawski, Piotr
    Guo, Chen
    Harth, Anne
    L'Huillier, Anne
    Arnold, Cord L.
    [J]. JOURNAL OF MODERN OPTICS, 2017, 64 : S1 - S6
  • [5] Dependence of depth of focus on spherical aberration of optical systems
    Miks, Antonin
    Novak, Jiri
    [J]. APPLIED OPTICS, 2016, 55 (22) : 5931 - 5935
  • [6] Stable spatial and spatiotemporal optical soliton in the core of an optical vortex
    Adhikari, S. K.
    [J]. PHYSICAL REVIEW E, 2015, 92 (04):
  • [7] Computational aberration correction in spatiotemporal optical coherence (STOC) imaging
    Borycki, Dawid
    Auksorius, Egidijus
    Wegrzyn, Piotr
    Wojtkowski, Maciej
    [J]. OPTICS LETTERS, 2020, 45 (06) : 1293 - 1296
  • [8] Tailoring bistability in optical tweezers with vortex beams and spherical aberration
    da Fonseca, Arthur L.
    Diniz, Kaina
    Monteiro, Paula B.
    Pires, Luis B.
    Moura, Guilherme T.
    Borges, Mateus
    Dutra, Rafael S.
    Ether Jr, Diney S.
    Viana, Nathan B.
    Neto, Paulo A. Maia
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [9] Low-order aberration sensitivity of an optical vortex coronagraph
    Palacios, David M.
    Hunyadi, Sarah L.
    [J]. OPTICS LETTERS, 2006, 31 (20) : 2981 - 2983
  • [10] Depth of focus and visual acuity with primary and secondary spherical aberration
    Yi, Fan
    Iskander, D. Robert
    Collins, Michael
    [J]. VISION RESEARCH, 2011, 51 (14) : 1648 - 1658