Improving the H2O/SO2 tolerance of Nd-modified Mn-Fe/FA through tailing the micro-environment of active sites in low-temperature NH3-SCR

被引:7
|
作者
Duan, Xiaoxu [1 ,2 ,3 ]
Rish, Salman Khoshk [4 ]
Li, Hua [5 ]
Dou, Jinxiao [1 ]
Yu, Jianglong [1 ,6 ,7 ]
机构
[1] Univ Sci & Technol Liaoning, Key Lab Adv Coal & Coking Technol Liaoning Prov, Anshan 114051, Liaoning, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
[3] Innovat Lab Sci & Technol Energy Mat Fujian Prov, Xiamen 361102, Fujian, Peoples R China
[4] Univ Newcastle, Chem Engn, Callaghan, NSW 2308, Australia
[5] Univ Western Australia, Sch Mol Sci, Crawley, WA 6009, Australia
[6] Suzhou Ind Pk Monash Res Inst Sci, Suzhou 215123, Jiangsu, Peoples R China
[7] Southeast Univ Monash Univ Joint Grad Sch, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
H; 2; O/SO; resistance; Neodymium; -modified; Coal fly ash -based catalyst; Low temperature; NH 3-SCR reaction; SELECTIVE CATALYTIC-REDUCTION; SO2; TOLERANCE; NO; NH3; MECHANISM; SCR; PERFORMANCE; RESISTANCE; OXIDE; OXYGEN;
D O I
10.1016/j.seppur.2024.128076
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The development of low-temperature NH3-SCR catalysts with high H2O/SO2 tolerance using coal fly ash, a solid waste was produced from coal combustion, as a carrier remains a significant challenge. Herein, we constructed an Nd-Mn-Fe/FA catalyst utilizing coal fly ash as a supporter material. The addition of Nd effectively adjusted the micro-environment of active sites, leading to improved resistance and de-NOx abilities. The NOx conversion maintained at 98 % even with the addition of H2O (5 vol% or 10 vol%) or SO2 (20 ppm) at 150 degrees C for 4 h, and the NOx conversion only decreased slightly from 98 % to 95 % when H2O (5 vol%) and SO2 (20 ppm) were cointroduced at 150 degrees C for 4 h. Moreover, the Nd-Mn-Fe/FA catalyst exhibited outstanding low-temperature NH3-SCR activity, achieving over 90 % NOx conversion in the temperature range of 80-200 degrees C. This is attributed to the addition of Nd, which increased the specific surface area and consequently reduced the apparent activation energies of the catalyst. Importantly, the addition of Nd altered the NH3-SCR pathway from both EleyRideal (E-R) and Langmuir-Hinshelwood (L-H) to primarily E-R. This work highlights the importance of incorporating Nd into coal fly ash (a solid waste) to enhance low-temperature de-NOx and H2O/SO2 resistance abilities, as well as providing a new way to treat and utilize the coal fly ash and mitigate the release of NOx.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance
    Xu, Guiying
    Guo, Xiaolong
    Cheng, Xingxing
    Yu, Jian
    Fang, Baizeng
    NANOSCALE, 2021, 13 (15) : 7052 - 7080
  • [2] MnCe/GAC-CNTs catalyst with high activity, SO2 and H2O tolerance for low-temperature NH3-SCR
    Xu, Yuchuan
    Wang, Pengchen
    Pu, Yijuan
    Jiang, Luyang
    Yang, Lin
    Jiang, Wenju
    Yao, Lu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 305
  • [3] La Modified Fe–Mn/TiO2 Catalysts to Improve SO2 Resistance for NH3-SCR at Low-Temperature
    Xinxin Hou
    Hongping Chen
    Yinghua Liang
    Yonglin Wei
    Zeqing Li
    Catalysis Surveys from Asia, 2020, 24 : 291 - 299
  • [4] Effect of calcination temperature on low-temperature NH3-SCR activity and the resistance of SO2 with or without H2O over Fe-Mn-Zr catalyst
    Fang, Ningjie
    Guo, Jiaxiu
    Shu, Song
    Luo, Hongdi
    Li, Jianjun
    Chu, Yinghao
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 93 : 277 - 288
  • [5] Pr-doped Modified Fe–Mn/TiO2 Catalysts with a High Activity and SO2 Tolerance for NH3-SCR at Low-Temperature
    Xinxin Hou
    Hongping Chen
    Yinghua Liang
    Xu Yang
    Yonglin Wei
    Catalysis Letters, 2020, 150 : 1041 - 1048
  • [6] V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO
    Jiang, Lijun
    Liu, Qingcai
    Ran, Guangjing
    Kong, Ming
    Ren, Shan
    Yang, Jian
    Li, Jiangling
    CHEMICAL ENGINEERING JOURNAL, 2019, 370 (810-821) : 810 - 821
  • [7] La Modified Fe-Mn/TiO2 Catalysts to Improve SO2 Resistance for NH3-SCR at Low-Temperature
    Hou, Xinxin
    Chen, Hongping
    Liang, Yinghua
    Wei, Yonglin
    Li, Zeqing
    CATALYSIS SURVEYS FROM ASIA, 2020, 24 (04) : 291 - 299
  • [8] High Resistance of SO2 and H2O over Monolithic Mn-Fe-Ce-Al-O Catalyst for Low Temperature NH3-SCR
    Hao, Shijie
    Cai, Yandi
    Sun, Chuanzhi
    Sun, Jingfang
    Tang, Changjin
    Dong, Lin
    CATALYSTS, 2020, 10 (11) : 1 - 13
  • [9] Improving SO2 tolerance and low-temperature denitrification performance in NH3-SCR catalysis: A comprehensive study on Nb and Mn modified CeO2 catalysts
    Wang, Zhaoying
    Chen, Jinfeng
    Zhong, Yuanhong
    Guo, Yakun
    Sun, Ming
    Yu, Lin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [10] Pr-doped Modified Fe-Mn/TiO2 Catalysts with a High Activity and SO2 Tolerance for NH3-SCR at Low-Temperature
    Hou, Xinxin
    Chen, Hongping
    Liang, Yinghua
    Yang, Xu
    Wei, Yonglin
    CATALYSIS LETTERS, 2020, 150 (04) : 1041 - 1048